See the below research associated with adverse events from the virus/vaccine:
IMPORTANT HISTORICAL STUDY – Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus https://pubmed.ncbi.nlm.nih.gov/22536382/
VERY IMPORTANT (Vaccine affects fetal growth) – The anti-SARS-CoV-2 BNT162b2 vaccine suppresses mithramycin-induced erythroid differentiation and expression of embryo-fetal globin genes in human erythroleukemia K562 cells https://www.biorxiv.org/content/10.1101/2023.09.07.556634v1
VERY IMPORTANT (Website detailing peer reviewed studies on adverse reactions of vaccines) – REACT19 Scientific Publications & Case Reports https://covid.crosstx.com/
At July 2023:
IMPORTANT (Chronic post-vaccination syndrome (PVS) after covid-19 vaccination) – Post-Vaccination Syndrome: A Descriptive Analysis of Reported Symptoms and Patient Experiences After Covid-19 Immunization https://www.medrxiv.org/content/10.1101/2023.11.09.23298266v1
The median age of participants was 46 years (interquartile range [IQR]: 38 to 56), with 192 (80%) identifying as female, 209 (87%) as non-Hispanic White, and 211 (88%) from the United States. Among these participants with PVS, 127 (55%) had received the BNT162b2 [Pfizer-BioNTech] vaccine, and 86 (37%) received the mRNA-1273 [Moderna] vaccine. The median time from the day of index vaccination to symptom onset was three days (IQR: 1 day to 8 days). The time from vaccination to symptom survey completion was 595 days (IQR: 417 to 661 days). The median Euro-QoL visual analogue scale score was 50 (IQR: 39 to 70). The five most common symptoms were exercise intolerance (71%), excessive fatigue (69%), numbness (63%), brain fog (63%), and neuropathy (63%). In the week before survey completion, participants reported feeling unease (93%), fearfulness (82%), and overwhelmed by worries (81%), as well as feelings of helplessness (80%), anxiety (76%), depression (76%), hopelessness (72%), and worthlessness (49%) at least once. Participants reported a median of 20 (IQR: 13 to 30) interventions to treat their condition.
IMPORTANT (Risk factors for Covid mortality) – Risk Factors for COVID-19 Mortality among Privately Insured Patients https://s3.amazonaws.com/media2.fairhealth.org/whitepaper/asset/Risk%20Factors%20for%20COVID-19%20Mortality%20among%20Privately%20Insured%20Patients%20-%20A%20Claims%20Data%20Analysis%20-%20A%20FAIR%20Health%20White%20Paper.pdf
IMPORTANT (Prevention of adverse events) Published June 2022 – Adverse effects of COVID-19 vaccines and measures to prevent them https://pubmed.ncbi.nlm.nih.gov/35659687/
IMPORTANT 2022 WHO STUDY (Risks of Adverse Events from the vaccine greater than any benefits 1 in 800 risk of SAESI) – Serious Adverse Events of Special Interest Following mRNA Vaccination in Randomized Trials https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4125239 WHO definition and detail https://cdn.who.int/media/docs/default-source/covid-19-vaccines-safety-surveillance-manual/covid19vaccines_manual_aesi.pdf?sfvrsn=239020a2_11&download=true
2.2 Identifying and shortlisting adverse events of special interest (AESIs)
AESIs are usually identified through active vaccine safety surveillance (AVSS) systems.
Conditions commonly considered as AESIs include serious events that have followed other
immunizations, for example:
- Guillain-Barré syndrome (GBS);
- acute disseminated encephalomyelitis (ADEM);
- anaphylaxis;
- serious events potentially related to novel platforms;
- serious events potentially related to adjuvants;
- serious events related to vaccine failure/immunogenicity (vaccine-associated enhanced
disease (VAED)); or - events that are potentially important for specific populations.
Such conditions are shortlisted if there is a:
- proven association with immunization that is true for most, if not all, vaccines;
- proven association with a known vaccine platform or adjuvant that is being used in anyCOVID-19 vaccine;
- theoretical concern based on immunopathogenesis of COVID-19 disease;
- theoretical concern related to viral replication during COVID-19 infection; or
- theoretical concern because it has been demonstrated in an animal model with one ormore candidate vaccine platforms.
VERY IMPORTANT (VAERS adverse reactions in children – 687,402 separate injuries attributed to the covid vaccines) – COVID-19 vaccine adverse events in a population aged 5-17 years: a study from the VAERS database https://pubmed.ncbi.nlm.nih.gov/36922249/
IMPORTANT (Pfizer own analysis of reported adverse events) – CUMULATIVE ANALYSIS OF POST-AUTHORIZATION ADVERSE EVENT REPORTS OF PF-07302048 (BNT162B2) RECEIVED THROUGH 28-FEB-2021 https://phmpt.org/wp-content/uploads/2021/11/5.3.6-postmarketing-experience.pdf
IMPORTANT (Analysis of deaths in the Pfizer trial) – Forensic analysis of the 38 subject deaths in the 6-Month Interim Report of the Pfizer/BioNTech BNT162b2 mRNA Vaccine Clinical Trial https://www.ijvtpr.com/index.php/IJVTPR/article/view/86
Our study is a forensic analysis of the 38 trial subjects who died between July 27, 2020, the start of Phase 2/3 of the clinical trial, and March 13, 2021, the data end date of their 6-Month Interim Report. Phase 2/3 of the trial involved 44,060 subjects who were equally distributed into two groups and received Dose 1 of either the BNT162b2 mRNA vaccinated or the Placebo control (0.9% normal saline). At Week 20, when the BNT162b2 mRNA vaccine received Emergency Use Authorization from the U.S. FDA, subjects in the placebo arm were given the option to be BNT162b2 vaccinated. All but a few accepted. Surprisingly, a comparison of the number of subject deaths per week during the 33 Weeks of this study found no significant difference between the number of deaths in the vaccinated versus placebo arms for the first 20 weeks of the trial, the placebo-controlled portion of the trial. After Week 20, as subjects in the Placebo were unblinded and vaccinated, deaths among this still unvaccinated cohort of this group slowed and eventually plateaued. Deaths in the BNT162b2 vaccinated subjects continued at the same rate. Our analysis revealed inconsistencies between the subject data listed in the 6-Month Interim Report and publications authored by Pfizer/BioNTech trial site administrators. Most importantly, we found evidence of an over 3.7-fold increase in number of deaths due to cardiovascular events in BNT162b2 vaccinated subjects compared to Placebo controls. This significant adverse event signal was not reported by Pfizer/BioNTech.
IMPORTANT (Showing deaths post vaccination stratified by gender) – Analysis of the Association Between BNT162b2 mRNA COVID-19 Vaccination and Deaths Within 10 Days After Vaccination Using the Sex Ratio in Japan https://www.cureus.com/articles/199892-analysis-of-the-association-between-bnt162b2-mrna-covid-19-vaccination-and-deaths-within-10-days-after-vaccination-using-the-sex-ratio-in-japan#!/
Results: For all-cause deaths among individuals aged ≥65 years, the sex ratio during the risk period was 92, significantly lower than that during the control period (130) (p=0.0050). Conversely, for all-cause deaths among those aged ≤64 years, the sex ratio during the risk period was 204, significantly higher than that during the control period (111) (p=0.044). Reported deaths were concentrated during the risk period in both groups. Sex ratios by period for each outcome were also examined. However, the differences were not significant across any of the outcomes.
Conclusion: The results indicate that the BNT162b2 mRNA vaccination may influence the occurrence of death during the risk period. In a cohort study in Japan, there was no significant increase in all-cause mortality owing to vaccination. This does not contradict the results of the present study. The results of a cohort study provide support for vaccine safety. However, this does not indicate that vaccine-related deaths are nonexistent; it only indicates that their number is not large enough to make a significant difference. Japan has relief services for adverse health effects that provide financial support to patients. On this occasion, it is difficult to determine whether a postvaccination death is incidental or vaccine-related. A self-controlled risk interval design and a comparison of sex ratios by period may be useful in examining the association between vaccination and deaths after vaccination when a cohort study does not detect a significant difference due to a low mortality rate. The latter approach may be particularly useful for analyzing data with reporting bias. The author believes that this approach may not provide conclusive evidence, but it can offer valuable insights into assessing vaccine safety
IMPORTANT (Safety of vaccines in immunocompromised) – Safety of COVID-19 Vaccines in Patients with Autoimmune Diseases, in Patients with Cardiac Issues, and in the Healthy Population https://www.mdpi.com/2076-0817/12/2/233
Here, we aim to give an overview of the safety profile and the actual known adverse effects of these products in relationship with their mechanism of action. We discuss the use and safety of these products in at-risk people, especially those with autoimmune diseases or with previously reported myocarditis, but also in the general population. We debate the real necessity of administering these products with unclear long-term effects to at-risk people with autoimmune conditions, as well as to healthy people, at the time of omicron variants. This, considering the existence of therapeutic interventions, much more clearly assessed at present compared to the past, and the relatively lower aggressive nature of the new viral variants.
IMPORTANT (Prior Covid infection increases the rate of AE’s after vaccination) – Prior COVID-19 infection is associated with increased Adverse Events (AEs) after the first, but not the second, dose of the BNT162b2/Pfizer vaccine https://pubmed.ncbi.nlm.nih.gov/34895935/
Important Korean studies:
IMPORTANT (Blood based adverse reactions post vaccination) – Hematologic abnormalities after COVID-19 vaccination: A large Korean population-based cohort study https://www.medrxiv.org/content/10.1101/2023.11.15.23298565v1
“This study demonstrated the haematologic adverse events associated with COVID-19 vaccination using real-world data. The cumulative incidence rate of nutritional anaemia, aplastic anaemia, and coagulation defects significantly and constantly increased for 3 months after the COVID-19 vaccination compared to the non-vaccinated group.”
Aplastic anaemia is a rare but serious blood condition that occurs when your bone marrow cannot make enough new blood cells for your body to work normally. There is no known cure at this point in time.
Nutritional anaemia refers to anaemia that can be directly attributed to nutritional disorders or deficiencies. Examples include Iron deficiency anaemia and pernicious anaemia.
Coagulations disorders are conditions that affect the blood’s clotting activities. Haemophilia, Von Willebrand disease, clotting factor deficiencies, hypercoagulable states and deep venous thrombosis are all coagulations disorders.
IMPORTANT (Population data showing range of adverse events) – The spectrum of non-fatal immune-related adverse events following COVID-19 vaccination: The population-based cohort study in Seoul, South Korea https://www.medrxiv.org/content/10.1101/2023.11.15.23298566v1
Results The cIR of non-fatal irAEs for three months was significantly higher in vaccinated subjects than in non-vaccinated subjects, except for endometriosis. The vaccination significantly increased the risks of all the non-fatal irAEs except for visual impairment. The risk of inner ear disease showed the highest HRs (HR [95% CI] = 2.368 [2.153-2.604]) among the non-fatal irAEs following COVID-19 vaccination. Among the vaccinated subjects, heterologous vaccination was associated with the increased risk of most of the non-fatal irAEs.
Conclusions The three-month risks of incidental non-fatal irAEs are substantially higher in the COVID-19 vaccinated subjects than in non-vaccinated controls. Our findings suggested that vaccinated subjects with predisposition are potentially vulnerable to the occurrence of diverse irAEs although the COVID-19 vaccines may not be fatal.
IMPORTANT (Inflammatory musculoskeletal disorders post vaccination) – Correlation between COVID-19 vaccination and inflammatory musculoskeletal disorders https://www.medrxiv.org/content/10.1101/2023.11.14.23298544v1
“Individuals who received COVID-19 vaccines, either mRNA, viral vector, or mixing and matching, were found to be more likely to be diagnosed with inflammatory musculoskeletal disorders compared to those who did not. Our results provide detailed information on the adverse reactions after COVID-19 vaccination. This information will be useful in clarifying adverse reactions to COVID-19 vaccines and educating people about the potential risk of inflammatory musculoskeletal disorders based on their vaccination status.”
VERY IMPORTANT (Systematic review of adverse events) – Serious harms of the COVID-19 vaccines: a systematic review https://www.medrxiv.org/content/10.1101/2022.12.06.22283145v2
Authors fouds the following points:
- Many of the studies we reviewed were of very poor quality and published in journals that failed to identify fundamental errors.
- To date, the most methodologically rigorous systematic review of SAEs was conducted by Fraiman et al, which re-analysed trial data from two pivotal randomised trials of the mRNA vaccines (Pfizer & Moderna), including SAEs from the websites of the FDA and Health Canada. The risk of an SAE following vaccination exceeded the risk of hospitalisation from covid-19.
- The adenovirus vector vaccines increased the risk of venous thrombosis and thrombocytopenia. (Authorities have responded by suspending the use of AstraZeneca’s vaccine across many European countries, and in the US, regulators have advised restricted use of Janssen’s vaccine).
- The mRNA-based vaccines increased the risk of myocarditis, with a mortality of about 1-2 per 200 cases. It was more common in younger males.
- We found evidence of serious neurological harms, including Bell’s palsy, Guillain-Barré syndrome, myasthenic disorder and stroke, which are likely due to an autoimmune reaction from mRNA and adenoviral vector vaccines.
- Severe harms, i.e. those that prevent daily activities, were underreported in the randomised trials.
- Severe harms were very common in studies of fully vaccinated people receiving boosters (3rd dose), and in a study of vaccination of previously infected people (i.e. those with naturally acquired immunity).
- Drug regulators and other authorities have been very slow in following up signals of serious harms.
- Given the difficulties of accessing regulatory data, obfuscations, and documented underreporting, we find it likely that there are other serious harms of the covid-19 vaccines, than those uncovered so far.
- Population-wide recommendations for covid vaccination and boosters ignore the negative benefit to harm balance in low-risk groups such as children and people who have already recovered from covid-19 (natural immunity).
IMPORTANT (5.6 in 1000 had stroke after vaccination) – Factors associated with stroke after COVID-19 vaccination: a statewide analysis https://pubmed.ncbi.nlm.nih.gov/37448752/
Overall, 473 (9.498 per 100 thousand) had ischemic stroke, and 87 (1.747 per 100 thousand) subjects had developed hemorrhagic stroke within 21 days post-vaccination. The 21-day post-vaccination incidence of ischemic stroke was 8.14, 11.14, and 10.48 per 100,000 for BNT162b2, mRNA-1273, and Ad26.COV2.S recipients, respectively; after adjusting for age, race, gender, and COVID-19 infection status, there was a 57% higher risk (OR = 1.57, 95% CI: 1.02, 2.42) for ischemic stroke within 21 days of vaccination associated with Ad26.COV2.S vaccine compared to BNT162b2 (Table 2). There was no difference seen in the risk of stroke between mRNA-1273 compared to BNT162b2. After adjusting for age, race, gender, and COVID-19 infection status, those with concurrent COVID-19 infection had an increased risk of ischemic (OR = 8.00, 95% CI: 4.18, 15.31) and hemorrhagic stroke (OR = 5.23, 95% CI: 1.11, 24.64). There was no statistical evidence for an interaction between vaccine type and concurrent COVID-19 infection.
Cardiac studies:
IMPORTANT (Persistence and biodistribution to the heart) – Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533894/
Here, we developed specific RT-qPCR-based assays to detect each mRNA vaccine and screened lymph nodes, liver, spleen, and myocardium from recently vaccinated deceased patients. Vaccine was detected in the axillary lymph nodes in the majority of patients dying within 30 days of vaccination, but not in patients dying more than 30 days from vaccination. Vaccine was not detected in the mediastinal lymph nodes, spleen, or liver. Vaccine was detected in the myocardium in a subset of patients vaccinated within 30 days of death. Cardiac ventricles in which vaccine was detected had healing myocardial injury at the time of vaccination and had more myocardial macrophages than the cardiac ventricles in which vaccine was not detected. These results suggest that SARS-CoV-2 mRNA vaccines routinely persist up to 30 days from vaccination and can be detected in the heart.
IMPORTANT (Risk of cardiac ischemic stroke higher following vaccination)- Risk of Ischemic Stroke after COVID-19 Bivalent Booster Vaccination in an Integrated Health System https://www.medrxiv.org/content/10.1101/2023.09.11.23295368v1
Results The incidence of ischemic stroke or TIA was 34.3 per 100,000 (95% CI, 17.7 – 59.9) in patients 65 years or older who received the bivalent Pfizer vaccine—based on a diagnosis code in the primary position of the emergency department or hospital discharge. The incidence increased to 45.7 per 100,000 (95% CI 26.1 – 74.2) when we expanded the search to a diagnosis in any position and did not adjudicate to confirm. However, most of those additional apparent stroke or TIA diagnoses were false-positive diagnoses based on physicians’ adjudications. Estimating the incidence based on the primary position agreed closely with estimating the incidence based on any position and physician adjudication: 37.1 per 100,000 (95% CI 19.8 – 63.5). Seventy-nine percent of the ischemic stroke cases were admitted to hospitals that are not owned by the integrated delivery system.
Conclusion We identified a 50% increase in the incidence of ischemic stroke per 100,000 patients ages 65 and older vaccinated with the Pfizer bivalent vaccine, compared to the data presented by the VSD. Seventy-nine percent of the ischemic stroke cases were admitted to non-plan hospitals and a delay in processing outside hospital insurance claims was likely responsible for the discrepancy in case ascertainment of ischemic stroke.
IMPORTANT (Heart monitored patients before and after jab show increase risk of Acute Coronary Syndrome from 11% pre jab to 25% post jab) – Abstract 10712: Observational Findings of PULS Cardiac Test Findings for Inflammatory Markers in Patients Receiving mRNA Vaccines https://www.ahajournals.org/doi/10.1161/circ.144.suppl_1.10712
A total of 566 pts, aged 28 to 97, M:F ratio 1:1 seen in a preventive cardiology practice had a previously scheduled PULS test drawn from 2 to 10 weeks following the 2nd mRNA COVID shot and was compared to the pt’s PULS test drawn 3 to 5 months previously pre-shot. Each vac pt’s PULS score and inflammatory marker changes were compared to their pre-vac PULS score, thus serving as their own control. There was no comparison made with unvaccinated patients or pts treated with other vaccines.
Baseline IL-16 increased from 35+/-20 above the norm to 82 +/- 75 above the norm post-vac; sFas increased from 22+/- 15 above the norm to 46+/-24 above the norm post vac; HGF increased from 42+/-12 above the norm to 86+/-31 above the norm post vac. These changes resulted in an increase of the pre vac PULS score of predicted 11% 5 yr ACS risk to a post vac PULS score of a predicted 25% 5 yr ACS risk, based on data which has not been validated in this population. No statistical comparison was done in this observational study.
In conclusion, the mRNA vacs numerically increase (but not statistically tested) the markers IL-16, Fas, and HGF, all markers previously described by others for denoting inflammation on the endothelium and T cell infiltration of cardiac muscle, in a consecutive series of a single clinic patient population receiving mRNA vaccines without a control group.
IMPORTANT (Endothelial inflammation and impact of the Pfizer vaccine) – Effects of BNT162b2 mRNA Covid-19 vaccine on vascular function https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302512
We evaluated the effects of BNT162b2 vaccine (BioNTech and Pfizer) on endothelial function assessed by flow-mediated vasodilation (FMD) and vascular smooth muscle function assessed by nitroglycerine-induced vasodilation (NID). This study was a prospective observational study. A total of 23 medical staff at Hiroshima University Hospital were enrolled in this study. FMD and NID were measured before vaccination and two weeks and six months after the 2nd dose of vaccination. FMD was significantly smaller two weeks after the 2nd dose of vaccination than before vaccination (6.5±2.4% and 8.2±2.6%, p = 0.03). FMD was significantly larger at six months than at two weeks after the 2nd dose of vaccination (8.2±3.0% and 6.5±2.4%, p = 0.03). There was no significant difference between FMD before vaccination and that at six months after the 2nd dose of vaccination (8.2±2.6% to 8.2±3.0%, p = 0.96). NID values were similar before vaccination and at two weeks, and six months after vaccination (p = 0.89). The BNT162b2 Covid-19 vaccine temporally impaired endothelial function but not vascular smooth muscle function, and the impaired endothelial function returned to the baseline level within six months after vaccination.
IMPORTANT (Virus S protein increases risk of atherogenic inflammatory responses. Spike detected in deceased patients lesions) – SARS-CoV-2 infection triggers pro-atherogenic inflammatory responses in human coronary vessels https://www.nature.com/articles/s44161-023-00336-5
Here we report that SARS-CoV-2 viral RNA is detectable and replicates in coronary lesions taken at autopsy from severe COVID-19 cases. SARS-CoV-2 targeted plaque macrophages and exhibited a stronger tropism for arterial lesions than adjacent perivascular fat, correlating with macrophage infiltration levels. SARS-CoV-2 entry was increased in cholesterol-loaded primary macrophages and dependent, in part, on neuropilin-1. SARS-CoV-2 induced a robust inflammatory response in cultured macrophages and human atherosclerotic vascular explants with secretion of cytokines known to trigger cardiovascular events. Our data establish that SARS-CoV-2 infects coronary vessels, inducing plaque inflammation that could trigger acute cardiovascular complications and increase the long-term cardiovascular risk
IMPORTANT (Cardiovascular complications following the injection) – A Systematic Review of Cardiovascular and Hematological Complications Following COVID-19 Vaccination https://www.trialsitenews.com/a/a-systematic-review-of-cardiovascular-and-hematological-complications-following-covid-19-vaccination-02cc29bb
Most of the adverse events associated with all five COVID-19 vaccines had been observed in the age group of 35–54. Apparently, no gender trend had been observed in affected persons, as 44.8% of patients who had received one of these vaccine types were females.
The second analysis included 98 studies, excluding one that lacked the patient’s details.
- Following Pfizer vaccination, 158 adverse events were reported in 122 individuals. These included cardiac injury (50), thrombosis (45), thrombocytopenia (43), hemorrhage (9), and 11 other adverse events (including hypertension and microangiopathy).
- After receiving the Moderna vaccine, 45 individuals reported adverse events. 25 were cardiac injuries, 17 were thrombocytopenia, 1 hemorrhage, and 2 other complications including Stage 2 hypertension and hypertensive crisis.
- Post AstraZeneca vaccination, 747 adverse events were reported in 217 individuals. Of these, 375 cases were thrombosis, 74 cardiac injuries, 206 thrombocytopenia, and 92 hemorrhages.
- A total of 61 adverse events were reported in 21 individuals following the administration of the Johnson and Johnson vaccine, with 40 thrombosis cases, 20 thrombocytopenia, and one cardiac problem.
- Only two cases were reported after receiving the CoronaVac vaccine. Kounis Syndrome Type I variant (allergic reaction due to inflammatory mediators causing chest pain), and haemophagocytic lymphohistiocytosis (abnormal immune activation causing liver and spleen enlargement).
Conclusion
This systemic review describes the rare adverse events reported after COVID-19 vaccination. Vaccines are made to stimulate the immune system but may sometimes unintentionally lead to issues like cardiovascular, hematological, or neurological complications. This, according to the authors of the systematic review, has caused global vaccine hesitancy despite the potential benefits of vaccines against COVID-19.
The adverse event rate is different among different vaccines. The rate of cardiovascular and hematological events in general was observed to be higher after the AstraZeneca vaccine. TrialSite has reported on growing litigation involving this vaccine in both the UK and Australia. The incidence of events like myocarditis (inflammation of heart muscles) is higher after administering mRNA vaccines and thrombosis after the AstraZeneca vaccine. However, there is the possibility of biased reporting or differences in the number of doses administered for each vaccine.
VERY IMPORTANT (Vaccine induced myocarditis follow up patients – 38% still had cardiac late gadolinium enhancement issues up to a year later) – Cardiovascular Assessment up to One Year After COVID-19 Vaccine–Associated Myocarditis https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373639/
Global systolic ventricular function appears to be preserved. However, impairment of LV and RV myocardial deformation and persistence of LGE in a significant subset of patients with up to 1 year of follow-up was observed. Growing evidence suggests worse prognosis in the presence of altered myocardial deformation and LGE in patients with myocarditis
VERY IMPORTANT (Cardia side effects of mRNA) – Cardiac side effects of RNA-based SARS-CoV-2 vaccines: Hidden cardiotoxic effects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure https://bpspubs.onlinelibrary.wiley.com/doi/10.1111/bph.16262
Key Results
In the first 24 h after application, both mRNA-1273 and BNT162b2 caused neither functional disturbances nor morphological abnormalities. After 48 h, expression of the encoded spike protein was detected in ventricular cardiomyocytes for both mRNAs. At this point in time, mRNA-1273 induced arrhythmic as well as completely irregular contractions associated with irregular as well as localized calcium transients, which provide indications of significant dysfunction of the cardiac ryanodine receptor (RyR2). In contrast, BNT162b2 increased cardiomyocyte contraction via significantly increased protein kinase A (PKA) activity at the cellular level.
Conclusions and Implications
Here we demonstrated for the first time, that in isolated cardiomyocytes, both mRNA-1273 and BNT162b2 induce specific dysfunctions that correlate pathophysiologically to cardiomyopathy. Both RyR2 impairment and sustained PKA activation may significantly increase the risk of acute cardiac events.
VERY IMPORTANT (Myocarditis relapsing after release showing longer term issues) – Relapsing myocarditis following initial recovery of post COVID-19 vaccination in two adolescent males – Case reports https://www.sciencedirect.com/science/article/pii/S2590136223000591
Between September 2021-September 2022 we observed two male adolescents with recurrent myocarditis related to mRNA-based-COVID19 vaccine. During the first episode both patients presented with fever and chest pain few days after their second dose of BNT162b2 mRNA Covid-19 Vaccine (Comirnaty®). The blood exams showed increased cardiac enzymes. In addition, complete viral panel was run, showing HHV7 positivity in a single case. The left ventricular ejection fraction (LVEF) was normal at echocardiogram but cardiac magnetic resonance scanning (CMR) was consistent with myocarditis. They were treated with supportive treatment with full recovery. The 6 months follow-up demonstrated good clinical conditions with normal cardiological findings. The CMR showed persistent lesions in left ventricle ‘s wall with LGE. After some months the patients presented at emergency department with fever and chest pain and increased cardiac enzymes. No decreased LVEF was observed. The CMR showed new focal areas of edema in the first case report and stable lesions in the second one. They reached full recovery with normalization of cardiac enzymes after few days.
IMPORTANT (Systemic review of myocarditis post vaccination) – COVID-19 Vaccine-Induced Myocarditis: A Systemic Review and Literature Search https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419896/
A thorough literature search was conducted in Cochrane library, PubMed, ScienceDirect, and Google Scholar for published literature till 30 March 2022. We identified 26 patients eligible from 29 studies; the data were pooled from these qualifying case reports and case series. Around 94% of patients were male in this study, the median age for onset of myocarditis was 22 years and 85% developed symptoms after the second dose. The median time of admission for patients to hospitals post-vaccination was three days and chest pain was the most common presenting symptom in these patients. Most patients had elevated troponin on admission and about 90% of patients had cardiac magnetic resonance imaging (CMR) that showed late gadolinium enhancement. All patients admitted with myocarditis were discharged home after a median stay of four days. Results from this current analysis show that post-mRNA vaccination myocarditis is mainly seen in young males after the second dose of vaccination. The pathophysiology of vaccine-induced myocarditis is not entirely clear and late gadolinium enhancement is a common finding on CMR in these patients that may indicate myocardial fibrosis or necrosis.
IMPORTANT (Troponin levels post vaccination) – Commentary: raised c-troponin levels as a sign of myocardial injury after COVID-19 vaccination in healthy individuals are worrying https://tehj.springeropen.com/articles/10.1186/s43044-024-00441-1
Main body
Burgin et al. have only cited papers in support of their claim which considered hospitalized COVID-19 patients. After extracting COVID-19 infection data from Germany and Switzerland and the expected frequency of elevated troponin levels after COVID-19 infection in both hospitalized and non-hospitalized individuals, we find that the extent of myocardial damage after vaccinating a considerable proportion of the general population is expected to be much higher than after natural infections.
Conclusions
The claim that the extent of myocardial injury after COVID-19 infection would be higher than after vaccination is not supported by empirical evidence and therefore wrong. We conclude that cross-national systematic observational studies should be conducted that allow a more precise estimation of the risk–benefit ratio of COVID-19 mRNA vaccinations.
IMPORTANT (Peer reviewed studies showing 1000 adverse events) – Peer Reviewed Medical Papers Submitted To Various Medical Journals, Evidencing A Multitude Of Adverse Events In Covid-19 Vaccine Recipients
VERY IMPORTANT (Vaccine attributed to death in absense of infection) – A case of fatal multi-organ inflammation following COVID-19 vaccination https://www.sciencedirect.com/science/article/pii/S1344622323000548
Authors found:
A 14-year-old Japanese girl died unexpectedly 2 days after receiving the third dose of the BNT1262b2 mRNA COVID-19 vaccine. Autopsy findings showed congestive edema of the lungs, T-cell lymphocytic and macrophage infiltration in the lungs, pericardium, and myocardium of the left atria and left ventricle, liver, kidneys, stomach, duodenum, bladder, and diaphragm. Since there was no preceding infection, allergy, or drug toxicity exposure, the patient was diagnosed with post-vaccination pneumonia, myopericarditis, hepatitis, nephritis, gastroenteritis, cystitis, and myositis. Although neither type of inflammation is fatal by itself, arrhythmia is reported to be the most common cause of death in patients with atrial myopericarditis. In the present case, arrhythmia of atrial origin was assumed as the cause of cardiac failure and death. In sudden post-vaccination deaths, aggressive autopsy systemic search and histological examination involving extensive sectioning of the heart, including the atrium, are indispensable.
IMPORTANT (Safety signal of mRNA injections in young age groups detects myo/pericarditis) – Safety of Monovalent BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), and NVX-CoV2373 (Novavax) COVID-19 Vaccines in US Children Aged 6 months to 17 years https://www.medrxiv.org/content/10.1101/2023.10.13.23296903v1
Our near real-time monitoring of 21 pre-specified health outcomes following monovalent COVID-19 vaccines detected signals for myocarditis/pericarditis in the age group 12-17 years and seizures/convulsions in the age group 2-4/5 years. We did not detect signals for other outcomes that were sequentially tested.
The myocarditis/pericarditis signal is consistent with peer-reviewed publication reports demonstrating an elevated risk of this outcome following mRNA vaccines among younger males aged 12 to 29 years.15–17 Myocarditis/pericarditis is a rare event with a reported average incidence of 39.3 cases per one million vaccine doses administered in children aged 5-17 years within 7 days after BNT162b2 vaccination.18–19 We did not detect a signal for myocarditis/pericarditis in children younger than 12 years old which is consistent with reports from other surveillance systems.20–21
IMPORTANT (TCM mimics cardiac problems) – Takotsubo Cardiomyopathy Following COVID-19 Vaccine Booster Dose: A Case Report https://www.cureus.com/articles/164379-takotsubo-cardiomyopathy-following-covid-19-vaccine-booster-dose-a-case-report#!/
IMPORTANT (Causal relationship between vaccination and cardiac event) – Temporal relation between second dose BNT162b2 mRNA Covid-19 vaccine and cardiac involvement in a patient with previous SARS-COV-2 infection https://www.sciencedirect.com/science/article/pii/S2352906721000622
IMPORTANT (Cardiac arrhythmias higher than thought) – Arrhythmias after COVID-19 Vaccination: Have We Left All Stones Unturned? https://www.mdpi.com/1422-0067/24/12/10405
VERY IMPORTANT – (Autopsy series – McCullough paper – Vaccine cause of 73.9% of deaths) – A SYSTEMATIC REVIEW OF AUTOPSY FINDINGS IN DEATHS AFTER COVID-19 VACCINATION https://zenodo.org/record/8120771
Published Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis Autopsy findings in cases of fatal COVID-19 vaccine-induced myocarditis https://pubmed.ncbi.nlm.nih.gov/38221509/
VERY IMPORTANT – (Autopsy series) – Death from COVID-19 in a Fully Vaccinated Subject: A Complete Autopsy Report https://www.mdpi.com/2076-393X/11/1/142
Authors found:
A correctly implemented and widely accepted vaccination campaign was the only truly effective weapon to reduce mortality and hospitalizations related to COVID-19. However, it was not 100% effective and has not eliminated COVID-19. Even though more than 60% of the worldwide population is fully vaccinated (meaning that these subjects have completed the recommended vaccine cycle), subjects continue to die from COVID-19, particularly in the presence of comorbidities. In this scenario, autopsies play a crucial role in understanding the pathophysiological mechanisms of SARS-CoV-2 in vaccinated subjects and adapting therapies accordingly.
This case report analyzes the death of a fully vaccinated patient who suffered from comorbidities and died from COVID-19; we provide a complete autopsy data set. On microscopic examination, the lungs showed massive interstitial pneumonia, areas of inflammation with interstitial lympho-plasma cell infiltrate, and interstitial edema. The liver showed granulocytes within the hepatic parenchyma.
All these elements were consistent with previous published data on unvaccinated patients who had died from COVID-19. The present study is the first that analyzes, through a complete autopsy and a microscopic analysis of all organs, a death related to COVID-19 despite vaccine administration. In this regard, to the best of our knowledge, no other studies have been published reporting a complete autopsy. This study reports, on the one hand, the importance of vaccination programs in the fight against COVID-19, and, on the other hand, it hypothesizes that the vaccine does not offer complete immunity to SARS-CoV-2, particularly in elderly subjects with comorbidities
VERY IMPORTANT (Brainstem being attacked, might cause SADS) – Neurovascular injury with complement activation and inflammation in COVID-19 https://academic.oup.com/brain/article/145/7/2555/6621999?login=false
VERY IMPORTANT (Spike protein directly responsible for disrupting cardiac mechanism) – SARS-CoV-2 direct cardiac damage through spike-mediated cardiomyocyte fusion https://europepmc.org/article/ppr/ppr232448
VERY IMPORTANT (Adverse events – Evidences neither safe nor effective) – Published 31 August 2022 – Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults https://www.sciencedirect.com/science/article/pii/S0264410X22010283#!
VERY IMPORTANT (Adverse events – Evidences neither safe nor effective) – Determining the Health Problems Experienced by Young Adults in Turkey, Who Received the COVID-19 Vaccine https://pubmed.ncbi.nlm.nih.gov/36146604/
VERY IMPORTANT (Spike protein causes endoplasmic reticulum stress – Published 2007) – The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations https://pubmed.ncbi.nlm.nih.gov/17670839/
VERY IMPORTANT (Prion disease) – COVID-19 RNA Based Vaccines and the Risk of Prion Disease https://www.semanticscholar.org/paper/COVID-19-RNA-Based-Vaccines-and-the-Risk-of-Prion-Classen/68580738ad152158a095c2f90a2a28a4c8b5d7d2
Blood clotting research:
VERY IMPORTANT (FDA own study shows jabs increase risk of thrombosis and clotting) – Surveillance of COVID-19 vaccine safety among elderly persons aged 65 years and older https://www.sciencedirect.com/science/article/pii/S0264410X22014931
Authors identified four statistical signals for elevated risk of acute myocardial infarction (ACI), pulmonary embolism (PE), disseminated intravascular coagulation (DIC) and immune thrombocytopenia following the Pfizer vaccine. They didn’t find any statistical signals for the Moderna or Johnson & Johnson vaccines for the 14 outcomes they were monitoring.
PEs (blood clots on the lungs) were 54% more likely, ACIs (heart attacks) were 42% more likely, DICs (blood clotting disorder) were 91% more likely and ITPs (platelet disorder) 44% more likely.
VERY IMPORTANT (Study shows jabs increase risk of thrombosis and clotting) – Thromboembolic events after Ad.26.COV2.S COVID-19 vaccine: Reports to the Vaccine Adverse Event Reporting
System https://pubmed.ncbi.nlm.nih.gov/36065046/
Authors found:
Key points
• The Vaccine Adverse Event Reporting System has received 3790 reports of thromboembolic
events (TEEs), with or without thrombocytopenia, in individuals who received Ad.26.COV2.S
COVID-19 Vaccine.
• Median time to onset was 12 days, and the majority of TEEs were serious, including
421 deaths.
• The most striking cases of TEE included severe clot burden (e.g., saddle pulmonary embolism
with or without cor pulmonale; lower extremity thrombus involving the external iliac, com-
mon femoral, popliteal, posterior tibial, peroneal, and gastrocnemius veins).
• Obesity and ischemia were among the most commonly documented risk factors.
• Further research may elucidate the pathophysiological mechanism of hypercoagulability fol-
lowing Ad26.COV2.S vaccination
VERY IMPORTANT (Pfizer BNT162b2 vaccine causes clotting) – Surveillance of COVID-19 vaccine safety among elderly persons aged 65 years and older https://www.sciencedirect.com/science/article/pii/S0264410X22014931
Authors found –
Findings
Four outcomes met the threshold for a statistical signal following BNT162b2 vaccination including pulmonary embolism (PE; RR = 1.54), acute myocardial infarction (AMI; RR = 1.42), disseminated intravascular coagulation (DIC; RR = 1.91), and immune thrombocytopenia (ITP; RR = 1.44). After further evaluation, only the RR for PE still met the statistical threshold for a signal; however, the RRs for AMI, DIC, and ITP no longer did. No statistical signals were identified following vaccination with either the mRNA-1273 or Ad26 COV2.S vaccines.
IMPORTANT (CLOTTING) – Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin https://cardiab.biomedcentral.com/articles/10.1186/s12933-021-01359-7
VERY IMPORTANT (Spike clotting) – SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19 https://pubmed.ncbi.nlm.nih.gov/32887634/
Using flow cytometry, we found that Spike protein induced integrin αIIbβ3 activation and P-selectin expression in the absence of agonist. Furthermore, Spike protein and S1, but not S2, enhanced both integrin αIIbβ3 activation and P-selectin expression in the presence of agonist (Fig. (Fig.4b).4b). These data indicate that S1, but not S2, binds ACE2 to regulate platelet function, which corroborates the finding that the receptor-binding domain (RBD) of the Spike protein is found in the S1 subunit [56].
IMORTANT (Blood clotting increases post vaccination) – Hematologic abnormalities after COVID-19 vaccination: A large Korean population-based cohort study https://www.medrxiv.org/content/10.1101/2023.11.15.23298565v1
Hematologic abnormalities after COVID-19 vaccination were identified as nutritional anemia, hemolytic anemia, aplastic anemia, coagulation defects, and neutropenia using International Classification of Diseases, Tenth Revision codes after index date. Incidence rates of hematologic abnormalities in the vaccination group 3 months after vaccination were significantly higher than those in the nonvaccinated group: 14.79 vs. 9.59 (P<.001) for nutritional anemia, 7.83 vs. 5.00 (P<.001) for aplastic anemia, and 4.85 vs. 1.85 (P<.001) for coagulation defects. COVID-19 mRNA vaccine was associated with higher development of nutritional anemia (odds ratio [OR], 1.230 [95% CI, 1.129-1.339], P<.001) and aplastic anemia (OR, 1.242 [95% CI, 1.110-1.390], P<.001) than the viral vector vaccine. The risk of coagulation defects was increased (OR, 1.986 [95% CI, 1.523-2.589], P<.001) after vaccination, and there was no risk difference between mRNA vaccine and viral vector vaccine (OR, 1.075 [95% CI, 0.936-1.233], P=.306). In conclusions, COVID-19 vaccination increased the risk of hematologic abnormalities. When administering the COVID-19 vaccine, careful observation will be necessary after vaccination.
VERY IMPORTANT (Spike seen on thombi clots) – Evidence of SARS-CoV-2 spike protein on retrieved thrombi from COVID-19 patients https://pubmed.ncbi.nlm.nih.gov/35974404/
VERY IMPORTANT (Clotting) – SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19 https://pubmed.ncbi.nlm.nih.gov/34328172/
Authors found:
Using scanning electron and fluorescence microscopy as well as mass spectrometry, we investigate the potential of this inflammagen to interact with platelets and fibrin(ogen) directly to cause blood hypercoagulation. Using platelet-poor plasma (PPP), we show that spike protein may interfere with blood flow. Mass spectrometry also showed that when spike protein S1 is added to healthy PPP, it results in structural changes to β and γ fibrin(ogen), complement 3, and prothrombin. These proteins were substantially resistant to trypsinization, in the presence of spike protein S1. Here we suggest that, in part, the presence of spike protein in circulation may contribute to the hypercoagulation in COVID-19 positive patients and may cause substantial impairment of fibrinolysis. Such lytic impairment may result in the persistent large microclots we have noted here and previously in plasma samples of COVID-19 patients.
IMPORTANT (Clotting in brain higher in vaccinated than infected) – Incidence of Cerebral Venous Thrombosis Following SARS-CoV-2 Infection vs mRNA SARS-CoV-2 Vaccination in Singapore https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2790206
IMPORTANT (Vaccination increases cardiac events during Covid wave – Israel – vaccination had no effect on cardiac incidences) – Increased emergency cardiovascular events among under-40 population in Israel during vaccine rollout and third COVID-19 wave https://www.nature.com/articles/s41598-022-10928-z
IMPORTANT (Brain clotting injuries) – Cerebrovascular Complications of COVID-19 and COVID-19 Vaccination https://pubmed.ncbi.nlm.nih.gov/35420916/
VERY IMPORTANT (Nordic country analysis of thromolic events after mRNA) – Analysis of Thromboembolic and Thrombocytopenic Events After the AZD1222, BNT162b2, and MRNA-1273 COVID-19 Vaccines in 3 Nordic Countries https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198750/
In the 28-day period following vaccination, there was an increased rate of coronary artery disease following mRNA-1273 vaccination (RR, 1.13 [95% CI, 1.02-1.25]), but not following AZD1222 vaccination (RR, 0.92 [95% CI, 0.82-1.03]) or BNT162b2 vaccination (RR, 0.96 [95% CI, 0.92-0.99]). There was an observed increased rate of coagulation disorders following all 3 vaccines (AZD1222: RR, 2.01 [95% CI, 1.75-2.31]; BNT162b2: RR, 1.12 [95% CI, 1.07-1.19]; and mRNA-1273: RR, 1.26 [95% CI, 1.07-1.47]). There was also an observed increased rate of cerebrovascular disease following all 3 vaccines (AZD1222: RR, 1.32 [95% CI, 1.16-1.52]; BNT162b2: RR, 1.09 [95% CI, 1.05-1.13]; and mRNA-1273: RR, 1.21 [95% CI, 1.09-1.35]). For individual diseases within the main outcomes, 2 notably high rates were observed: 12.04 (95% CI, 5.37-26.99) for cerebral venous thrombosis and 4.29 (95% CI, 2.96-6.20) for thrombocytopenia, corresponding to 1.6 (95% CI, 0.6-2.6) and 4.9 (95% CI, 2.9-6.9) excess events per 100 000 doses, respectively, following AZD1222 vaccination.
IMPORTANT HISTORICAL MYOCARDITIS SUDDEN DEATH Published 2005 – Propranolol ameliorates and epinephrine exacerbates progression of acute and chronic viral myocarditis https://journals.physiology.org/doi/full/10.1152/ajpheart.00258.2005
Authors found:
Researchers investigated the impact of the ‘β-adrenergic system on cytokines and neurohumoral factors and the sequelae of viral myocarditis. In an experimental model with virus-infected BALB/c mice, we studied the acute and chronic effects of epinephrine and propranolol on myocardial morphology, cytokine gene expression, and survival.
Mice were inoculated with the encephalomyocarditis virus (EMCV) or sham inoculated with saline and followed for 30 days.
Epinephrine increased the severity of inflammatory cell infiltration and myocardial necrosis induced by EMCV. Gene expression of TNF-α, IL-6, and IL-10 was markedly enhanced by epinephrine in EMCV-inoculated mice. Survival rate after 30 days was reduced to 40% in epinephrine-treated EMCV-inoculated mice compared with 70% in untreated EMCV-inoculated mice (P < 0.05).
Treatment with the β-blocker propranolol significantly decreased mortality, myocardial necrosis, and infiltration of inflammatory cells in EMCV-inoculated mice. Propranolol also suppressed gene expression of TNF-α, IL-6, and IL-10.
A single dose of epinephrine 120 days after EMCV inoculation caused sudden death in 70% of infected mice; propranolol significantly reduced incidence of death to 33%. These results indicate that acute and chronic stages of viral myocarditis are modulated by the β-adrenergic system and its interactions with proinflammatory cytokines.’
IMPORTANT (Vaccination linked to POTS) – Apparent risks of postural orthostatic tachycardia syndrome diagnoses after COVID-19 vaccination and SARS-Cov-2 Infection https://www.nature.com/articles/s44161-022-00177-8
Discussion
In our large and diverse population, using a sequence–symmetry analysis, we found apparent evidence of POTS-associated diagnoses occurring more frequently after COVID-19 vaccination than before vaccination. These new POTS diagnoses occurred at a more frequent rate than did new CPC diagnoses after vaccination. However, the rate of new POTS diagnoses made after vaccination was much less frequent the rate of new POTS diagnoses made after SARS-CoV-2 infection, indicating that excess risks remain higher after infection than after vaccination. This same general trend of proportionately higher rates of new diagnosis after infection compared to after vaccination was consistently seen for myocarditis, which we considered the benchmark condition, as well as for other more common diagnoses, which we considered the referent conditions.
VERY IMPORTANT (Myocarditis VAERS reporting and temporal causality – McCullough and Rose paper) – DETERMINANTS OF COVID-19 VACCINE-INDUCED MYOCARDITIS https://zenodo.org/record/8356800
Results: We found the number of myocarditis reports in VAERS after COVID-19 vaccination in 2021 was 223 times higher than the average of all vaccines combined for the past 30 years. This represented a 2,500% increase in absolute number of reports in the first year of the campaign when comparing historical values prior to 2021. Demographic data revealed that myocarditis occurred most in youths (50%) and males (69%). 76% of cases resulted in emergency care and hospitalization. Of the total myocarditis reports, 92 individuals died (3%). Myocarditis was more likely after dose two (p < 0.00001) and individuals less than 30 years of age were more likely than individuals older than 30 to acquire myocarditis (p < 0.00001).
Conclusions: COVID-19 vaccination is strongly associated with a serious adverse safety signal of myocarditis resulting in hospitalization and death.
IMPORTANT (Vaccine induced myocarditis, case series review) – COVID-19 Vaccine-Related Myocarditis: A Descriptive Study of 40 Case Reports https://www.cureus.com/articles/84223-covid-19-vaccine-related-myocarditis-a-descriptive-study-of-40-case-reports#!/
Results
In this study of 41 case reports of COVID-19 vaccine-induced myocarditis, the average age of presentation was 29.13 ± 14.39 years of age. Out of all reported cases, 90% of cases are seen in males and only 10% of cases are seen in females (Figure 1).
Figure 1: Percentage of males versus females affected
The majority of the reported cases got myocarditis after taking the Pfizer vaccine, which in 26 cases was around 65%, while 12 patients took Moderna at 30%. Out of these 40 reported cases, only 2 (5%) took the Janssen (J&J) vaccine (Figure 2).
Figure 2: Percentage of myocarditis with various types of vaccine
In the collected data, we found most of the cases, 32, were after the second dose of vaccine (80%), three cases were reported after the first dose of vaccine (7.50%), and five cases were not reported anything specific to the dose (13%) for Pfizer and Moderna vaccines (Figure 3).
Figure 3: Number of myocarditis cases after each dosage
The majority of the patients were noted to have chest pain (92.5%), with 27.50% having common complaints with dyspnea. 25% of patients had associated fever and 7.50% had myalgia (Figure 4).
Figure 4: Clinical features of COVID-19 vaccine-related myocarditis
IMPORTANT (Stage 3 hypertension being caused by the vaccines) – Stage III Hypertension in Patients After mRNA-Based SARS-CoV-2 Vaccination https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.121.17316
We report a case series of 9 patients with stage III hypertension documented within minutes of vaccination during the first 30 days, of which 8 were symptomatic. Inclusion criteria for monitoring are detailed in Table. Vital signs were measured with an oscillometric manometer (Omron Healthcare Europe; a HEM 907-E7) with at least 3 sets of separate values at 5-minute intervals. Median age was 73 (IQR, 22) years and sex distribution was 7 women for 2 men. Eight of 9 patients had a history of arterial hypertension with most patients on antihypertensive therapy. All but one patient received the Pfizer/BioNTech (BNT162b2) vaccine. Of note, the Moderna (mRNA-1273) vaccine was only introduced in late January in Switzerland. One of the patients (n=3) reported a cerebral aneurysm that was coiled within the last year, with a targeted SBP <140 mm Hg.1 Due to developing headache, the patient underwent imaging with no sign of intracranial hemorrhage. Patient No. 4 did not have associated ECG changes or an increase in hs-troponins. Importantly, all patients recovered but required at most several hours of monitoring at our tertiary center’s emergency department.
IMPORTANT (Intercranial bleeding after vaccine) – Intracranial aneurysm rupture within three days after receiving mRNA anti-COVID-19 vaccination: Three case reports https://pubmed.ncbi.nlm.nih.gov/35509565/
Case description: We retrospectively reviewed the medical records of individuals who received a first and/ or second dose of mRNA COVID-19 vaccine between March 6, 2021, and June 14, 2021, in a rural district in Japan, and identified the occurrences of aneurysmal SAH within 3 days after mRNA vaccination. We assessed incidence rates (IRs) for aneurysmal SAH within 3 days after vaccination and spontaneous SAH for March 6-June 14, 2021, and for the March 6-June 14 intervals of a 5-year reference period of 2013-2017. We assessed the incidence rate ratio (IRR) of aneurysmal SAH within 3 days after vaccination and spontaneous SAH compared to the crude incidence in the reference period (2013-2017). Among 34,475 individuals vaccinated during the study period, three women presented with aneurysmal SAH (IR: 1058.7/100,000 person-years), compared with 83 SAHs during the reference period (IR: 20.7/100,000 persons-years). IRR was 0.026 (95% confidence interval [CI] 0.0087-0.12; P < 0.001). A total of 28 spontaneous SAHs were verified from the Iwate Stroke Registry database during the same period in 2021 (IR: 34.9/100,000 person-years), and comparison with the reference period showed an IRR of 0.78 (95%CI 0.53-1.18; P = 0.204). All three cases developed SAH within 3 days (range, 0-3 days) of the first or second dose of BNT162b2 mRNA COVID-19 vaccine by Pfizer/BioNTech. The median age at the time of SAH onset was 63.7 years (range, 44- 75 years). Observed locations of ruptured aneurysms in patients were the bifurcations of the middle cerebral artery, internal carotid-posterior communicating artery, and anterior communicating artery, respectively. Favorable outcomes (modified Rankin scale scores, 0-2) were obtained following microsurgical clipping or intra-aneurysm coiling.
Conclusion: Although the advantages of COVID-19 vaccination appear to outweigh the risks, pharmacovigilance must be maintained to monitor potentially fatal adverse events and identify possible associations.
VERY IMPORTANT (Myocarditis pre-Covid baseline – 4 in a million) Arola et al – Occurrence and Features of Childhood Myocarditis: A Nationwide Study in Finland https://www.ahajournals.org/doi/full/10.1161/JAHA.116.005306
The total standardized incidence rate of myocarditis‐related admissions was 1.95 (95% CI, 1.69–2.24) per 100 000 person‐years (crude rate: 2.02; 95% CI, 1.76–2.31). The overall incidence rate remained roughly stable during the first 11 years of life but increased thereafter (Figure 3A). The standardized incidence rate among girls was 0.94 (95% CI, 0.70–1.25) per 100 000 person‐years. Among boys, the likelihood of myocarditis was notably higher, with an incidence rate of 2.92 (95% CI, 2.49–3.42) per 100 000 person‐years. If only 1 admission per year (n=187) for each patient was included, the standardized incidence rate was 1.71 (95% CI, 1.47–1.98) per 100 000 person‐years (crude rate: 1.77; 95% CI, 1.53–2.04) in the total study population, 0.74 (95% CI, 0.52–1.01) per 100 000 person‐years for girls, and 2.63 (95% CI, 2.22–3.10) per 100 000 person‐years for boys.
VERY IMPORTANT (Meta-analysis of myocarditis) – A Systematic Review and Meta-analysis of the Association Between SARS-CoV-2 Vaccination and Myocarditis or Pericarditis https://www.ajpmonline.org/article/S0749-3797(22)00453-6/fulltext
Overall, a statistically significant association was discovered between COVID-19 vaccination and myocarditis or pericarditis. Compared to unvaccinated people, myocarditis or pericarditis in those following COVID-19 vaccines were 2.13-fold higher (95% CI=1.55, 2.94; I2= 92.5%; p<0.001). In addition, a statistically significant association was discovered between COVID-19 vaccination and myocarditis. The pooled RR was 2.02 (95% CI=1.21, 3.37; I2=97.8%; p<0.001), Such association was not found in pericarditis (RR=1.16; 95% CI=0.74, 1.82; I2=0; p=0.509). People who received the first dose had an increased risk of myocarditis or pericarditis compared with those who did not receive COVID-19 vaccine, and this risk was more pronounced after receiving the second dose (first dose versus unvaccinated: RR=1.33; 95% CI=1.17, 1.51; I2=0; p<0.001; second dose versus unvaccinated: RR=2.93; 95% CI=1.54, 5.58; I2=93.9%; p=0.001). Furthermore, compared with the first dose of a COVID-19 vaccine, the administration of the second dose was associated with an increased risk of reporting pericarditis and/or myocarditis. The pooled RR was 4.06 (95% CI=2.08, 7.92; I2=52.5%; p<0.001).
VERY IMPORTANT (Covid-19 not associated with myocarditis in unvaccinated, therefore implicates vaccine – Tuvali et al) – The Incidence of Myocarditis and Pericarditis in Post COVID-19 Unvaccinated Patients—A Large Population-Based Study https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9025013/
Post COVID-19 infection was not associated with either myocarditis (aHR 1.08; 95% CI 0.45 to 2.56) or pericarditis (aHR 0.53; 95% CI 0.25 to 1.13). We did not observe an increased incidence of neither pericarditis nor myocarditis in adult patients recovering from COVID-19 infection.
VERY IMPORTANT (Myocarditis injury not high in severe Covid-19 patients in ICU) – Comparison of incidence and prognosis of myocardial injury in patients with COVID-19-related respiratory failure and other pulmonary infections: a contemporary cohort study https://www.medrxiv.org/content/10.1101/2023.06.09.23291222v1
Results The study included 1444 patients with COVID-19 [55.5% men; age 58 (46;68) years] and 182 patients with other pulmonary infections [46.9% men; age 62 (44;73) years]. The incidence of MI at ICU admission was lower in COVID-19 patients (36.4%) compared to non-COVID-19 patients (56%), and this difference persisted after adjusting for age, sex, coronary artery disease, heart failure, SOFA score, lactate, and C-reactive protein [RR 0.84 (95% CI, 0.71-0.99)]. MI at ICU admission was associated with a 59% increase in mortality [RR 1.59 (1.36-1.86); P<0.001], and there was no significant difference in the mortality between patients with COVID-19 and those with other pulmonary infections (P=0.271).
Conclusion Myocardial injury is less frequent in patients with critical COVID-19 pneumonia and respiratory failure compared to those with other types of pneumonia. The occurrence of MI is a significant risk factor for in-hospital mortality, regardless of the etiology of the pulmonary infection.
VERY IMPORTANT (Covid-19 not associated with myocarditis in unvaccinated, therefore implicates vaccine) – Risk of myocarditis following sequential COVID-19 vaccinations by age and sex https://www.medrxiv.org/content/10.1101/2021.12.23.21268276v1.full-text Published in Circulation Journal https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.122.059970
VERY IMPORTANT (Covid-19 not associated with myocarditis in unvaccinated, therefore implicates vaccine) – COVID-19–Associated cardiac pathology at the postmortem evaluation: a collaborative systematic review https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941843/
Authors found:
SARS-CoV-2-induced myocarditis
In this review, we subdivided the reported cardiac inflammatory processes in patients with COVID-19 into four categories based on the degree of myocardial involvement and the presence of associated myocyte damage. Overall, the prevalence of each category was low, with vast differences between individual studies that cannot be explained solely by the methodological differences of the studies, and likely indicate significant selection and reporting bias. The median reported prevalence of extensive myocarditis, multifocal active myocarditis, and focal active myocarditis were all 0.0%, and the median prevalence of inflammatory infiltrate without myocyte damage was 0.6%.
Regrettably, clinical correlation or pooled prevalence estimates in the included reported autopsy series were not possible due to the heterogenous results and paucity of clinical and imaging data provided. Nonetheless, reports of clinically diagnosed myocarditis with pathologic correlation have been reported among inpatients with COVID-19 [36,48,64]. Intriguingly, Gauchotte et al. demonstrated pathologic evidence of myocarditis without lung involvement, and further showed the presence of the SARS-CoV-2 genome in cardiomyocytes in this case [36]. This finding is concordant with other studies suggesting a greater degree of inflammation with viral presence in the heart [65].
The diagnosis of most cases of myocarditis included in this review were based on the Dallas criteria. This methodology, although widely accepted, is not without its inherent limitations. First and foremost, the Dallas criteria were developed to diagnose myocarditis by endomyocardial biopsy (EMB), not autopsy, wherein a more abundant amount of tissue is available for histologic evaluation. The generalization (and clinical significance) of small foci of myocyte damage within autopsy-derived cardiac tissue is challenging to ascertain. Other limitations of the Dallas criteria include significant interobserver variability and sampling errors [66,67].
Although less of an issue in autopsy-derived tissue, the focal nature of the disease leads to sampling errors that have been shown to compromise the sensitivity of the histopathological diagnosis of myocarditis by EMB [68,69]. Chow et al. had estimated that a mean of 17 samples per patient would be required to establish a diagnosis of myocarditis [69], which likely explains why examining an increased number of cardiac tissue blocks at the time of autopsy resulted in a greater likelihood of identifying focal myocarditis.
The overall low prevalence of myocarditis in patients with COVID-19 is of interest, particularly when placed in the greater context of the available literature. In a recent meta-analysis on the diagnosis of myocarditis by EMB (including 61 studies with 10,491 patients), the prevalence of myocarditis according to the Dallas criteria was 8.04% [70]. This diagnosis was made on the relatively limited amount of tissue provided by EMB. In contrast, this review shows a myocarditis prevalence of 8% in abundant available tissue, often comprising multiple blocks of myocardium with greater orders of magnitude in the amount of tissue to examine. The pretest factors among these data points differ, but underscores the overall low prevalence of myocarditis in COVID-19 deaths and is concordant with previous literature reviews on the topic [71].
VERY IMPORTANT (Covid-19 not associated with myocarditis in unvaccinated, therefore implicates vaccine) – Myocarditis and Pericarditis After Vaccination for COVID-19 https://jamanetwork.com/journals/jama/fullarticle/2782900
VERY IMPORTANT (Myocarditis cases increased after vaccination) – Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021 https://jamanetwork.com/journals/jama/fullarticle/2788346
The reports to the Vaccine Adverse Event Reporting System met the case definition of myocarditis (reported cases). Among individuals older than 40 years of age, there were no more than 8 reports of myocarditis for any individual age after receiving either vaccine. For the BNT162b2 vaccine, there were 114 246 837 first vaccination doses and 95 532 396 second vaccination doses; and for the mRNA-1273 vaccine, there were 78 158 611 and 66 163 001, respectively. The y-axis range differs between panels A and B.
The reports to the Vaccine Adverse Event Reporting System met the case definition of myocarditis (reported cases). Among recipients of either vaccine, there were only 13 reports or less of myocarditis beyond 10 days for any individual time from vaccination to symptom onset. The y-axis range differs between panels A and B.
A, For the BNT162b2 vaccine, there were 138 reported cases of myocarditis with known date for symptom onset and dose after 114 246 837 first vaccination doses and 888 reported cases after 95 532 396 second vaccination doses.
B, For the mRNA-1273 vaccine, there were 116 reported cases of myocarditis with known date for symptom onset and dose after 78 158 611 first vaccination doses and 311 reported cases after 66 163 001 second vaccination doses.
Discussion
In this review of reports to VAERS between December 2020 and August 2021, myocarditis was identified as a rare but serious adverse event that can occur after mRNA-based COVID-19 vaccination, particularly in adolescent males and young men. However, this increased risk must be weighed against the benefits of COVID-19 vaccination.18
Compared with cases of non–vaccine-associated myocarditis, the reports of myocarditis to VAERS after mRNA-based COVID-19 vaccination were similar in demographic characteristics but different in their acute clinical course. First, the greater frequency noted among vaccine recipients aged 12 to 29 years vs those aged 30 years or older was similar to the age distribution seen in typical cases of myocarditis.2,4 This pattern may explain why cases of myocarditis were not discovered until months after initial Emergency Use Authorization of the vaccines in the US (ie, until the vaccines were widely available to younger persons). Second, the sex distribution in cases of myocarditis after COVID-19 vaccination was similar to that seen in typical cases of myocarditis; there is a strong male predominance for both conditions.2,4
However, the onset of myocarditis symptoms after exposure to a potential immunological trigger was shorter for COVID-19 vaccine–associated cases of myocarditis than is typical for myocarditis cases diagnosed after a viral illness.24–26 Cases of myocarditis reported after COVID-19 vaccination were typically diagnosed within days of vaccination, whereas cases of typical viral myocarditis can often have indolent courses with symptoms sometimes present for weeks to months after a trigger if the cause is ever identified.1 The major presenting symptoms appeared to resolve faster in cases of myocarditis after COVID-19 vaccination than in typical viral cases of myocarditis. Even though almost all individuals with cases of myocarditis were hospitalized and clinically monitored, they typically experienced symptomatic recovery after receiving only pain management. In contrast, typical viral cases of myocarditis can have a more variable clinical course. For example, up to 6% of typical viral myocarditis cases in adolescents require a heart transplant or result in mortality.27
In the current study, the initial evaluation and treatment of COVID-19 vaccine–associated myocarditis cases was similar to that of typical myocarditis cases.28–31 Initial evaluation usually included measurement of troponin level, electrocardiography, and echocardiography.1 Cardiac MRI was often used for diagnostic purposes and also for possible prognostic purposes.32,33 Supportive care was a mainstay of treatment, with specific cardiac or intensive care therapies as indicated by the patient’s clinical status.
Long-term outcome data are not yet available for COVID-19 vaccine–associated myocarditis cases. The CDC has started active follow-up surveillance in adolescents and young adults to assess the health and functional status and cardiac outcomes at 3 to 6 months in probable and confirmed cases of myocarditis reported to VAERS after COVID-19 vaccination.34 For patients with myocarditis, the American Heart Association and the American College of Cardiology guidelines advise that patients should be instructed to refrain from competitive sports for 3 to 6 months, and that documentation of a normal electrocardiogram result, ambulatory rhythm monitoring, and an exercise test should be obtained prior to resumption of sports.35 The use of cardiac MRI is unclear, but it may be useful in evaluating the progression or resolution of myocarditis in those with abnormalities on the baseline cardiac MRI.36 Further doses of mRNA-based COVID-19 vaccines should be deferred, but may be considered in select circumstances.37
VERY IMPORTANT (Covid-19 not associated with myocarditis in unvaccinated, therefore implicates vaccine) – Hospitalised Myocarditis and Pericarditis Cases in Germany Indicate a Higher Post-Vaccination Risk for Young People Mainly after COVID-19 Vaccination https://pubmed.ncbi.nlm.nih.gov/36294393/
Authors found:
In 2019 and 2020, only very few cases of myocarditis or pericarditis were associated with vaccines, suggesting that only a few other vaccines contributed to the case number in 2021. The large increase in hospitalised myocarditis or pericarditis cases in 2021 compared to 2019 and 2020 is only partly explained by vaccine-related adverse events or COVID-19. A general underreporting of adverse events has been described previously and may be an explanation for this finding [3]. In addition, the vaccine’s efficacy for symptomatic COVID-19 decreased in Germany among juveniles aged 12 to 17 from approximately 90% in early December 2021 to approximately 10% in late April 2022. At the time, the protective effect for hospitalisation was mostly between 30% and 65%, with peaks up to 90% and 100%, based on overall low case numbers [4].
A recent study on the incidence of myocarditis in a cohort of 65,785 patients aged 18 to 39 years found an incidence of 9.1 cases per 100,000 booster doses up to 21 days after a booster vaccination. This rate was substantially higher than the 0.2 cases reported by the Vaccine Adverse Event Reporting System, which is a passive system relying on patients or providers to report events [5].
VERY IMPORTANT (Covid-19 not associated with myocarditis in unvaccinated, therefore implicates vaccine) – Clinical outcomes of myocarditis after SARS-CoV-2 mRNA vaccination in four Nordic countries: population based cohort study https://bmjmedicine.bmj.com/content/2/1/e000373 & https://bmjmedicine.bmj.com/content/bmjmed/2/1/e000373.full.pdf
Authors found:
In 2018-22, 7292 patients were admitted to hospital with new onset myocarditis, with 530 (7.3%) categorised as having myocarditis associated with SARS-CoV-2 mRNA vaccination, 109 (1.5%) with myocarditis associated with covid-19 disease, and 6653 (91.2%) with conventional myocarditis
VERY IMPORTANT (Myocarditis deaths linked to vaccination from all vaccine types; mRNA / adenovirus) – Risk of Myocarditis After Sequential Doses of COVID-19 Vaccine and SARS-CoV-2 Infection by Age and Sex https://pubmed.ncbi.nlm.nih.gov/35993236/
Vaccine-Associated Myocarditis
Authors found: In the study period, we observed 140 and 90 patients who were admitted to the hospital or died of myocarditis after a first and second dose of ChAdOx1 vaccine, respectively. Of these, 40 (28.6%) and 11 (12.2%)‚ respectively, died with myocarditis or within 28 days from hospital admission. Similarly, there were 124, 119, and 85 patients who were admitted to the hospital or died of myocarditis after a first, second, and third dose of BNT162b2 vaccine, respectively. Of these, 22 (17.7%), 14 (11.8%), and 13 (15.3%) patients died with myocarditis or within 28 days from hospital admission. Last, there were 11, 40, and 8 patients who were admitted to the hospital for myocarditis after, respectively, a first, second, and third dose of mRNA-1273 vaccine. None of these patients died with myocarditis or within 28 days from hospital admission with myocarditis (Table (Table22).
IMPORTANT (Carditis risks within 28 days) – Risk of carditis after three doses of vaccination with mRNA (BNT162b2) or inactivated (CoronaVac) covid-19 vaccination: a self-controlled cases series and a case-control study https://pubmed.ncbi.nlm.nih.gov/37360861/
Findings: A total of 8,924,614 doses of BNT162b2 and 6,129,852 doses of CoronaVac were administered from February 2021 to March 2022. The SCCS detected increased carditis risks after BNT162b2: 4.48 (95%confidence interval [CI]:2.99-6.70] in 1-14 days and 2.50 (95%CI:1.43-4.38) in 15-28 days after first dose; 10.81 (95%CI:7.63-15.32) in 1-14 days and 2.95 (95%CI:1.82-4.78) in 15-28 days after second dose; 4.72 (95%CI:1.40-15.97) in 1-14 days after third dose. Consistent results were observed from the case-control study. Risks were specifically found in people aged below 30 years and males. No significant risk increase was observed after CoronaVac in all primary analyses.
Interpretations: We detected increased carditis risks within 28 days after all three doses of BNT162b2 but the risk after the third doses were not higher than that of the second dose when compared with baseline period. Continuous monitoring of carditis after both mRNA and inactivated covid-19 vaccines is needed.
VERY IMPORTANT (BMJ meta-analysis on myocarditis) – Risk of myocarditis and pericarditis in mRNA COVID-19-vaccinated and unvaccinated populations: a systematic review and meta-analysis https://bmjopen.bmj.com/content/13/6/e065687
Results Seven studies met the inclusion criteria, of which six were included in the quantitative synthesis. Our meta-analysis indicates that within 30-day follow-up period, vaccinated individuals were twice as likely to develop myo/pericarditis in the absence of SARS-CoV-2 infection compared to unvaccinated individuals, with a rate ratio of 2.05 (95% CI 1.49–2.82).
Conclusion Although the absolute number of observed myo/pericarditis cases remains quite low, a higher risk was detected in those who received mRNA COVID-19 vaccinations compared with unvaccinated individuals in the absence of SARS-CoV-2 infection. Given the effectiveness of mRNA COVID-19 vaccines in preventing severe illnesses, hospitalisations and deaths, future research should focus on accurately determining the rates of myo/pericarditis linked to mRNA COVID-19 vaccines, understanding the biological mechanisms behind these rare cardiac events and identifying those most at risk.
VERY IMPORTANT (Vaccines cause myocarditis) – Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination https://pubmed.ncbi.nlm.nih.gov/36436002/ Published in Clinical Research in Cardiology Journal https://link.springer.com/article/10.1007/s00392-022-02129-5
Authors found: Standardized autopsies were performed on 25 persons who had died unexpectedly and within 20 days after anti-SARS-CoV-2 vaccination. In four patients who received a mRNA vaccination, we identified acute (epi-)myocarditis without detection of another significant disease or health constellation that may have caused an unexpected death. Histology showed patchy interstitial myocardial T-lymphocytic infiltration, predominantly of the CD4 positive subset, associated with mild myocyte damage. Overall, autopsy findings indicated death due to acute arrhythmogenic cardiac failure. Thus, myocarditis can be a potentially lethal complication following mRNA-based anti-SARS-CoV-2 vaccination.
VERY IMPORTANT (Vaccines cause myocarditis – did not test for viral N protein) – Myocarditis after Covid-19 mRNA Vaccination https://www.nejm.org/doi/full/10.1056/NEJMc2109975
In these two adult cases of histologically confirmed, fulminant myocarditis that had developed within 2 weeks after Covid-19 vaccination, a direct causal relationship cannot be definitively established because we did not perform testing for viral genomes or autoantibodies in the tissue specimens. However, no other causes were identified by PCR assay or serologic examination.
IMPORTANT (Vaccines cause myocarditis) – Myocarditis with ventricular tachycardia following bivalent COVID-19 mRNA vaccination https://www.cjcopen.ca/article/S2589-790X%2823%2900121-X/fulltext?utm_source=substack&utm_medium=email
“Two weeks before his fifth COVID-19 vaccination, no worsening of his heart failure was detected at our regular outpatient clinic. However, on the day following bivalent BNT162b2 (wild and BA.4-5) vaccination (Pfizer–BioNTech), he was rushed to our hospital with dyspnea.”
“This report indicates the need to suspect myocarditis based on clinical presentation and the importance of multimodality diagnosis using electrocardiography, echocardiography, laboratory testing, myocardial scintigraphy, and CMR [cardiac magnetic resonance]. In our case, CMR showed LGE in the inferolateral segments of the epicardial to mid layers, which has been reported to be a characteristic finding in patient with mRNA vaccine-associated myocarditis. Endocardial biopsy is the gold standard for detecting myocarditis but is invasive and thought to have less sensitivity in disorders resulting from epicardial and patchy diseases such as myocarditis. On the other hand, CMR is considered to be the cornerstone for diagnosis of vaccine-associated myocarditis due to its high diagnostic performance, with a reported sensitivity of 88% and specificity of 96% in community-acquired myocarditis. The COVID-19 vaccine is thought to cause myocarditis via direct damage by free spike protein and induction of inflammatory cytokines (e.g., IL-1β and IL-6) by the lipid nanoparticles covering the mRNA. Expression of free spike protein may increase after the initial bivalent vaccination because antibodies against the spike protein of the BA.4-5 variant are yet to be generated. In autopsy cases, histology has shown patchy interstitial myocardial T-lymphocytic infiltration (T-cell dominant; CD4>>CD8) associated with damage to myocytes.6Molecular mimicry between myocyte tissue and the SARS-COV2 spike protein may also produce an anti-myocytic immune response.6Therefore, T lymphocyte-mediated cell injury and heart-specific autoimmunity have been suggested as mechanisms of post-vaccine myocarditis.”
“The COVID-19 vaccine is thought to cause myocarditis via direct damage by free spike protein and induction of inflammatory cytokines (e.g., IL-1β and IL-6) by the lipid nanoparticles covering the mRNA. Expression of free spike protein may increase after the initial bivalent vaccination because antibodies against the spike protein of the BA.4-5 variant are yet to be generated.”
IMPORTANT (Myocarditis case series of reports – Systematic review) – Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series https://pubmed.ncbi.nlm.nih.gov/34921468/
IMPORTANT (Possible mechanism of vaccine induced myocarditis) – Soluble factors in COVID-19 mRNA vaccine-induced myocarditis causes cardiomyoblast hypertrophy and cell injury: a case report https://virologyj.biomedcentral.com/articles/10.1186/s12985-023-02120-0
IMPORTANT (Myocarditis following bivalent vaccine in a senior) – Myocarditis with ventricular tachycardia following bivalent COVID-19 mRNA vaccination https://www.cjcopen.ca/article/S2589-790X%2823%2900121-X/fulltext
IMPORTANT (Myocarditis in military personnel) – Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601
Findings In this case series of 23 male patients, including 22 previously healthy military members, myocarditis was identified within 4 days of receipt of a COVID-19 vaccine. For most patients (n = 20), the diagnosis was made after the second dose of mRNA COVID-19 vaccine; these episodes occurred against the backdrop of 2.8 million doses of mRNA COVID-19 vaccines administered.
IMPORTANT (Myocarditis and pericarditis found increased risk after doses. Also Acute Kidney Injury observed) – Adverse Events Following the BNT162b2 mRNA COVID-19 Vaccine (Pfizer-BioNtech) in Aotearoa New Zealand https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4329970
The observed rates of most AESIs post-vaccination were not statistically different than the expected rates. The IRR (95% CI) of myo/pericarditis following the first dose was 2.6 (2.2– 2.9) with a risk difference (95% CI) of 1.6 (1.1– 2.1) per 100,000 persons vaccinated and was 4.1 (3.7– 4.5) with a risk difference of 3.2 (2.6– 3.9) per 100,000 persons vaccinated following the second dose. The highest IRR was 25.8 (95% CI 15.6– 37.9) in the 5-19 years age group, following the second dose of the vaccine, with an estimated 5 additional myo/pericarditis cases per 100,000 persons vaccinated. An increased incidence of acute kidney injury (AKI) was observed following the first (1.6 (1.5– 1.6)) and second (1.7 (1.6– 1.7)) dose of BNT162b2.
IMPORTANT (Vaccines cause myocarditis – 1 in 35 myocardial injury post vaccine – 50% not back to normal post follow up) – Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 Booster Vaccination https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejhf.2978
First, our findings confirmed the study hypothesis. mRNA-1273 booster vaccination-associated elevation of markers of myocardial injury occurred in about one out of 35 persons(2.8%), a greater incidence than estimated in meta-analyses of hospitalized cases with myocarditis (estimated incidence 0.0035%) after the second vaccination.14,15 Elevated hs-cTnT was independent of previous COVID infection or the interval since the last vaccine dose. Among the overall group of participants, hs-cTnT concentration on day 3 after mRNA-1273 booster vaccination as a continuous variable, was significantly higher compared to a well-matched control cohort. Second, all cases were mild with only a transient and short period of myocardial injury (maximum hs-cTnT concentration 35ng/L). No patient showed ECG changes and, no patient developed MACE within 30 days.
Therefore, the main finding of this study, that subclinical mRNA vaccine-associated myocardial injury is much more common than estimated based on passive surveillance, has been confirmed and generalized in these complimentary cohorts of slightly older health care workers in Israel and adolescents in Thailand. Additional active surveillance studies are needed to externally validate two specific findings of this study: the even higher rate of mRNA-1273 booster vaccination associated myocardial injury overall, and particularly in women.
VERY IMPORTANT (Subclinical vaccine induced myocarditis affecting 58% elderly with pre-existing cardiac issues increasing risk of death post vaccination) – Subacute Effects of Vaccination with a Messenger RNA-based Vaccine Against Coronavirus Disease 2019 on Elderly Japanese Patients with Cardiac Disorder https://www.researchsquare.com/article/rs-1391307/v1
This study showed that vaccination against COVID-19 was associated with a high risk of death or decompensated heart failure for Japanese elderly patients with severe cardiac dysfunction and a high pre-BNP ratio ≥ 4-fold higher than the UNL (500 ng/mL in NT-pro BNP). However, the risk was negligible in patients with a pre-BNP ratio < 4-fold higher than the UNL (Table 2). The incidence of death and/or remarkable increase in the BNP ratio (i.e., ≥ 10-fold higher than the UNL) in the post-vaccination period was strongly dependent on a pre-BNP ratio ≥ 4-fold higher that the UNL (500 ng/mL in NT-pro BNP in Table 2). Cardiovascular death after the vaccination developed only in patients with a pre-BNP ratio > 12.6-fold higher than the UNL (1,575 in NT-pro BNP). Patients with a pre-BNP ratio < 4-fold higher than the UNL in the pre-vaccination period did not expire or show remarkable increase in the BNP ratio after vaccination. This cardiac deterioration was not accompanied by side effects, such as anaphylactic hemodynamic deterioration or sustained high fever in the acute phase, or myocardial infarction, liver dysfunction, or renal dysfunction (Table 1) both in the acute and subacute phases.
IMPORTANT (Myocarditis not transient when after 6 months 80% of cases have still not recovered) – Cytokinopathy with aberrant cytotoxic lymphocytes and profibrotic myeloid response in SARS-CoV-2 mRNA vaccine-associated myocarditis https://www.science.org/doi/10.1126/sciimmunol.adh3455?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
VERY IMPORTANT (Vaccine induced Myocarditis not transient or mild) – COVID-19 vaccination-related myocarditis: a Korean nationwide study https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehad339/7188747?login=false
Predictably, Moderna dose two is associated with the highest rate of 1 in 86,000. Pfizer is the second most dangerous vaccine in this regard, with an incidence of 1 in 166,600 per vaccinated persons after the second dose. Comparatively, the AstraZeneca vaccine is associated with a 1 in 1,111,111 incidence of vaccine-related myocarditis.The most concerning part of the study is the reported rate of “severe Covid-19 vaccine-related myocarditis.” Researchers identified 95 cases (19.8%) of severe myocarditis, 85 ICU admissions (17.7%), 36 fulminant myocarditis cases (7.5%), 21 ECMO therapies (4.4%) (a modified heart-lung by-pass machine), 21 deaths (4.4%), and 1 heart transplantation (0.2%).
A 20% rate of serious complications from vaccine-related myocarditis is “startling.”
21 deaths, all in those aged 45 or less, were ultimately attributed to the vaccine. 8 of these deaths were sudden cardiac arrests that were diagnosed with myocarditis on autopsy because the Korean vaccine compensation program requires autopsies on patients that die after vaccination.
Importantly, no one suspected myocarditis as a cause of death in these cases until the autopsies were done.
VERY IMPORTANT (Cardiac issues no more common between virus infection and background rate) – Prospective Case-Control Study of Cardiovascular Abnormalities 6 Months Following Mild COVID-19 in Healthcare Workers https://pubmed.ncbi.nlm.nih.gov/33975819/
Cardiovascular abnormalities are no more common in seropositive versus seronegative otherwise healthy, workforce representative individuals 6 months post-mild severe acute respiratory syndrome-coronavirus-2 infection.
VERY IMPORTANT (Systematic analysis of myocarditis papers show wrong stratification; Prof Prasad paper) – COVID-19 vaccine induced myocarditis in young males: A systematic review https://onlinelibrary.wiley.com/doi/full/10.1111/eci.13947
IMPORTANT (Viral induced myocarditis in athletes) – Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes With Recent SARS-CoV-2 Infection https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8160916/
Findings
In this cohort study of 1597 US competitive collegiate athletes undergoing comprehensive cardiovascular testing, the prevalence of clinical myocarditis based on a symptom-based screening strategy was only 0.31%. Screening with cardiovascular magnetic resonance imaging increased the prevalence of clinical and subclinical myocarditis by a factor of 7.4 to 2.3%.
VERY IMPORTANT (Bivalent not as effective and produces more adverse) – Bivalent BNT162b2mRNA original/Omicron BA.4-5 booster vaccination: adverse reactions and inability to work compared to the monovalent COVID-19 booster https://www.medrxiv.org/content/10.1101/2022.11.07.22281982v1
VERY IMPORTANT (Outcomes of cardiovascular after infection) – Long-term cardiovascular outcomes of COVID-19 https://www.nature.com/articles/s41591-022-01689-3
We show that, beyond the first 30 d after infection, individuals with COVID-19 are at increased risk of incident cardiovascular disease spanning several categories, including cerebrovascular disorders, dysrhythmias, ischemic and non-ischemic heart disease, pericarditis, myocarditis, heart failure and thromboembolic disease. These risks and burdens were evident even among individuals who were not hospitalized during the acute phase of the infection and increased in a graded fashion according to the care setting during the acute phase (non-hospitalized, hospitalized and admitted to intensive care). Our results provide evidence that the risk and 1-year burden of cardiovascular disease in survivors of acute COVID-19 are substantial.
IMPORTANT – Adverse reactions surveys
A multitude of evidence showing neither “safe” nor “effective”:
A Nationwide Survey of mRNA COVID-19 Vaccinee’s Experiences on Adverse Events and Its Associated Factors https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244024/
Adverse drug reactions from two COVID-19 vaccines reported in Saudi Arabia https://pubmed.ncbi.nlm.nih.gov/35095267
Side Effects of COVID-19 Pfizer-BioNTech mRNA Vaccine in Children Aged 12–18 Years in Saudi Arabia https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621258/
Results: The study recruited a total of 965 eligible participants. Overall, 571 (60%) of the study participants reported at least one side effect following Pfizer-BioNTech (BNT162b2) mRNA vaccination. The most frequently reported side effects were pain or redness at the site of injection (90%), fatigue (67%), fever (59%), headache (55%), nausea or vomiting (21%), and chest pain and shortness of breath (20%). Joint or bone pain were reported less frequently among our participants (2%). Our data showed that more female participants reported side effects compared to male participants, with 52% and 48%, respectively. Side effects were more common after the second dose compared to the first dose in our study cohort.
BNT162b2 and ChAdOx1 SARS-CoV-2 Post-vaccination Side-Effects Among Saudi Vaccinees https://pubmed.ncbi.nlm.nih.gov/34692740/
Evaluation of Short-Term Symptoms Associated With COVID-19 Vaccines Used Among Adolescents in Saudi Arabia https://www.cureus.com/articles/114641-evaluation-of-short-term-symptoms-associated-with-covid-19-vaccines-used-among-adolescents-in-saudi-arabia
Side effects reported after getting the COVID-19 vaccine
Among participants who experienced COVID-19 vaccination adverse reactions (54.9%, No.= 554), 87.5% had pain at the site of injection, 84.5% reported fatigue, 69% had a headache, 67.5% had a fever, 39.7% had chills, and 19.1% had nausea and vomiting (Figure 1). Other adverse effects had been recorded by the participants such as menstrual disturbance, lymph node enlargement, muscle and bone aches, runny nose, red eye, flu, and drowsiness. Of note, 75.6% of the participants reported using medications to avoid or mitigate vaccination side effects; however, about 9% of those participants had to visit the doctor after the onset of symptoms, and only 2.3% needed admission to the hospital because of the symptoms associated with the received vaccine. The vaccine side effects lasted from one to two days in 67.1%, three to five days in 25.8%, and more than five days in 7.0% of the participants (Table 3).
Study of the Side Effects of Pfizer and Oxford COVID-19 Vaccines in the Eastern Province of Saudi Arabia https://pubmed.ncbi.nlm.nih.gov/36196371/
Prevalence of side-effects associated with the booster dose of Pfizer-BioNTech (BNT162b2) of COVID-19 Vaccine among vaccinated adults in the Eastern province of Saudi Arabia https://pubmed.ncbi.nlm.nih.gov/36276167/
Pfizer booster safety profile (n = 370):
- .82% reported myo/pericarditis (which would have to be clinically diagnosed)
- 16% reported delayed menstruation
- 1.1% of respondents were hospitalized
Conclusions
Our study showed that participants in the Eastern province of Saudi Arabia receiving a booster dose of the Pfizer-BioNTech (BNT162b2) COVID-19 vaccine commonly experienced short-lived side effects, especially pain or redness at the infection site, but also fatigue, body pain, fever and headache. 2.4% of recipients had sought medical attention for their side effects, although only four participants (1.1%) were admitted to the hospital after experiencing side effects. Findings from this study support the vaccine’s safety as well as provide important baseline data for healthcare workers and the general public to be aware of possible side effects following the COVID-19 vaccine. In light of the current study, its results support the vaccine’s safety and provide important baseline data that will raise healthcare workers’ and the general public’s awareness of COVID-19 vaccine expected side-effects. In this way, vaccine-hesitant individuals and pessimists might be convinced to accept the COVID-19 booster dose.
Cognizance, adverse effects and motivation regarding COVID-19 vaccination amongst health care professionals: A cross-sectional study https://dmp.umw.edu.pl/pdf/2022/59/1/13.pdf
Investigating trends in those who experience menstrual bleeding changes after SARS-CoV-2 vaccination https://www.medrxiv.org/content/10.1101/2021.10.11.21264863v2
Abstract
Early in 2021, many people began sharing that they experienced unexpected menstrual bleeding after SARS-CoV-2 inoculation. We investigated this emerging phenomenon of changed menstrual bleeding patterns among a convenience sample of currently and formerly menstruating people using a web-based survey. In this sample, 42% of people with regular menstrual cycles bled more heavily than usual while 44% reported no change after being vaccinated. Among respondents who typically do not menstruate, 71% of people on long-acting reversible contraceptives, 39% of people on gender-affirming hormones, and 66% of post-menopausal people reported breakthrough bleeding. We found increased/breakthrough bleeding was significantly associated with age, systemic vaccine side effects (fever, fatigue), history of pregnancy or birth, and ethnicity. Generally, changes to menstrual bleeding are not uncommon nor dangerous, yet attention to these experiences is necessary to build trust in medicine.
Blood pressure increase after Pfizer/BioNTech SARS-CoV-2 vaccine https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8206586/
A total of 113 respondents completed the survey. Two doses of Pfizer/BioNTech vaccine (0.3 mL containing 30 micrograms of SARS-CoV-2 single-stranded, 5’-capped messenger RNA) were administered at distance of 21 days in the deltoid muscle of the upper arm.
Prevalence of women and current smokers was 73% and 15%, respectively. Mean age was 43±11 years. Prevalence of hypertension, diabetes mellitus, dyslipidemia, and asthma was 18%, 1%, 19%, and 10%, respectively. A previous myocardial infarction was recorded in 1 subject and 13 subjects had a previous documented exposure to SARS-CoV-2.
Adverse reactions occurred in 87% of subjects after the first dose and 83% after the second dose of vaccine. Most reactions were mild and none of the subjects discontinued normal daily activities. There was transitory loss of taste and smell in 1 subject. Body temperature >38.0 °C, tachycardia, or a rise in BP occurred in 13% and 27% of subjects after the first and second dose, respectively.
The subjects with documented infection by SARS-COV-2 over the previous year showed a higher frequency of systemic reactions to vaccine when compared with those without history of documented infection (38% vs 10%, p = 0.004).
Overall, 6 subjects (5.3%) showed an average rise in systolic or diastolic BP at home by ≥ 10 mmHg during the first 5 days after the first dose of vaccine when compared with the five days before the vaccine. Table 1 shows the main characteristics of these subjects. The BP rise required an intensification of BP-lowering treatment in 4 subjects. Two of the subjects with a BP rise after the first dose experienced a BP rise also after the second dose. Of note, history of COVID-19 was associated with a higher incidence of rise in BP when compared with subjects without previous exposure to SARS-CoV-2 (23% vs 3%, p = 0.002).
Israel MOH Booster Survey
Hebrew: https://drive.google.com/file/d/1NyMrHRTO-SLvygWtPmA39QlgqCE_GbsP/view
English: https://t.me/MOHreport/9197
Adverse reactions to the BNT162b2 and mRNA-1273 mRNA COVID-19 vaccines in Japan https://pubmed.ncbi.nlm.nih.gov/35058126/
Adverse Events Following COVID-19 Vaccination in Rivers State, Nigeria: A Cross-Sectional Study https://pubmed.ncbi.nlm.nih.gov/35488575/
Results: In this study, 50.5% of respondents reported post-vaccination adverse events out of which 10 (4.6%) were severe (30% of the severe cases were life-threatening, 60% were hospitalised and 10% were placed on bed rest). The most common side effects were fever (73.0%), pain at the injection site (41.2%), fatigue (33.3%), body ache (17.5%) and headache (13.8%).
Adverse Reactions Following the First Dose of ChAdOx1 nCoV-19 Vaccine and BNT162b2 Vaccine for Healthcare Workers in South Korea https://pubmed.ncbi.nlm.nih.gov/33942579/
Side effects of the Pfizer BioNTech vaccine in health workers of a hospital in the southeast of Mexico https://pubmed.ncbi.nlm.nih.gov/36223615/
Prevalence of severe adverse events among health professionals after receiving the first dose of the ChAdOx1 nCoV-19 coronavirus vaccine (Covishield) in Togo, March 2021 https://pubmed.ncbi.nlm.nih.gov/34819146/
Results
A total of 1,639 health professionals (70.2% male) with a median age of 32 (interquartile range: 27-40) were enrolled. At least one adverse event was reported among 71.6% of participants (95% CI = [69.3-73.8]). The most commonly reported adverse events were injection site pain (91.0%), asthenia (74.3%), headache (68.7%), soreness (55.0%), and fever (47.5%). An increased libido was also reported in 3.0% of participants. Of the participants who experienced adverse events, 18.2% were unable to go to work the day after vaccination, 10.5% consulted a medical doctor, and 1.0% were hospitalized. The SAEs’ prevalence was 23.8% (95% CI = [21.8-25.9]). Being <30 years (AOR = 5.54; p<0.001), or 30-49 years (AOR = 3.62; p<0.001) and being female (AOR = 1.97; p<0.001) were associated with SAEs.
In other words, as a % of the total number of participants:
- 13% were unable to go to work the next day
- 7.52% went to the doctor
- 0.72% were hospitalized
Determining the Health Problems Experienced by Young Adults in Turkey, Who Received the COVID-19 Vaccine https://pubmed.ncbi.nlm.nih.gov/36146604/
Side Effects of mRNA-Based and Viral Vector-Based COVID-19 Vaccines among German Healthcare Workers https://pubmed.ncbi.nlm.nih.gov/34439984/
Menstrual cycle disturbances after COVID-19 vaccination https://pubmed.ncbi.nlm.nih.gov/35796571/
Post-vaccination changes: regularity
Overall, 94 women (51.08%) reported regular cycles after vaccination, 79 (42.93%) noted irregular cycles after vaccination (variation > 9 days), and 11 (5.97%) of them reported having amenorrhea after vaccination. The vaccine that most frequently affected cycle regularity was Pfizer and Sinovac; however, for the J&J/Janssen vaccine more women reported irregular cycles (n = 19) than normal (58% versus 42%).
Post-vaccination changes: duration
In relation to the duration of the menstrual cycle, 120 women (65.21%) mentioned a duration in normal ranges (<8 days), 26.08% (48) commented a prolongation of the cycle (>9 days), and only 16 women (8.69%) reported amenorrhea/absent.
Post-vaccination changes: volume
The volume variable was reported as abnormal by 127 women (69.02%), being heavy in 41.84% (n = 77), light in 20.65% (n = 38), and absent in 6.52% (n = 12). Overall, 30.97% (n = 57) of the women described the volume as normal. When discriminating by biologics, 17 women (9.23%) vaccinated with Pfizer reported light volume, while the others reported predominantly heavy cycles (J&J/Janssen n = 18, Sinovac n = 21, Moderna n = 9, others n = 7, AstraZeneca n = 6).
Affectation in the quality of life
Of the 950 women who answered the survey, 31.36% (n = 298) commented that their QoL was affected after vaccination. Likewise, of the 184 who reported alterations in their menstrual cycle, 55.97% (103) stated a deterioration in their QoL after having been vaccinated in all the standard indicators evaluated perception of wealthiness, physical and mental health, pain.
Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers https://pubmed.ncbi.nlm.nih.gov/33866000/
Safety and side effect profile of Pfizer-BioNTech COVID-19 vaccination among healthcare workers: A tertiary hospital experience in Singapore https://pubmed.ncbi.nlm.nih.gov/34625758/
Side Effects and Perceptions Following COVID-19 Vaccination in Jordan: A Randomized, Cross-Sectional Study Implementing Machine Learning for Predicting Severity of Side Effects https://pubmed.ncbi.nlm.nih.gov/34073382/
IMPORTANT (Increased risk of AE’s) – Previous COVID-19 infection, but not Long-COVID, is associated with increased adverse events following BNT162b2/Pfizer vaccination https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164507/
VERY IMPORTANT (NNT and ARR / RRR) – Curing the pandemic of misinformation on COVID-19 mRNA vaccines through real evidence-based medicine; Part 1 – https://insulinresistance.org/index.php/jir/article/view/71/224 – Part 2 – https://insulinresistance.org/index.php/jir/article/view/72/228
IMPORTANT (Stroke factors after vaccination) – Factors Associated with Stroke after COVID-19 Vaccination: A Statewide Analysis https://www.medrxiv.org/content/10.1101/2023.02.05.23285486v1
Those with concurrent COVID infection within 21 days post vaccine had an increased risk of ischemic (OR=8.00, 95% CI: 4.18, 15.31) and hemorrhagic stroke (OR=5.23, 95% CI: 1.11, 24.64) with no evidence for interaction between vaccine type and concurrent COVID-19 infection. The 21-day post vaccination incidence of ischemic stroke was 8.14, 11.14, and 10.48 per 100,000 for BNT162b2, mRNA-1273 and Ad26.COV2.S recipients, respectively. After adjusting for age, race, gender, and COVID-19 infection status there was a 57% higher risk (OR=1.57, 95% CI: 1.02, 2.42) for ischemic stroke within 21 days of vaccination associated with the Ad26.COV2.S vaccine compared to BNT162b2.
Conclusions Concurrent COVID-19 infection had the strongest association with early ischemic and hemorrhagic stroke after first dose COVID-19 vaccination. The Ad26.COV2.S vaccine was associated with a higher risk of early post-vaccination ischemic stroke than BNT162b2.
VERY IMPORTANT (Vaccine induced myocarditis more prevalent) – SARS-CoV-2 vaccine and increased myocarditis mortality risk: A population based comparative study in Japan https://www.medrxiv.org/content/10.1101/2022.10.13.22281036v1
Authors found: Conclusion: SARS-CoV-2 vaccination was associated with higher risk of myocarditis death, not only in young adults but also in all age groups including the elderly. Considering healthy vaccinee effect, the risk may be 4 times or higher than the apparent risk of myocarditis death. Underreporting should also be considered. Based on this study, risk of myocarditis following SARS-CoV-2 vaccination may be more serious than that reported previously.
IMPORTANT (Myocarditis Nordic Population Level Study) – Booster Vaccination with SARS-CoV-2 mRNA Vaccines and Myocarditis Risk in Adolescents and Young Adults: A Nordic Cohort Study of 8.9 Million Residents https://www.medrxiv.org/content/10.1101/2022.12.16.22283603v1
Authors found:
Results A total of 8.9 million residents were followed for 12,271,861 person-years. We identified 1533 cases of myocarditis. In 12-to-39-year-old males, the 28-day acute risk period following the third dose of BNT162b2 or mRNA-1273 was associated with an increased incidence rate of myocarditis compared to the post-acute risk period 28 days or more after a second homologous dose (IRR, 2.08 [95% CI, 1.31 to 3.33] and 8.89 [95% CI, 2.26 to 35.03], respectively). The corresponding incidence rates following the third dose of BNT162b2 and mRNA-1273 were 0.86 and 1.95, respectively, within 28 days of follow-up among 100,000 individuals.
Conclusions and Relevance Our results suggest that a booster dose is associated with increased myocarditis risk in male adolescents and young male adults.
IMPORTANT (Myocarditis increases post vaccination) – Myocarditis and Pericarditis Post-mRNA COVID-19 Vaccination: Insights from a Pharmacovigilance Perspective https://www.mdpi.com/2077-0383/12/15/4971
Males in the 12–17 and 18–24-year-old age groups had the highest number of cases, with significant signals for both males and females after the second dose. We also identified an increased reporting for a spectrum of cardiovascular symptoms such as chest pain and dyspnea, which increased with age, and were reported more frequently than myo/pericarditis. The present study identified signals of myo/pericarditis and related cardiovascular symptoms after mRNA COVID-19 vaccination, especially among children and adolescents. These findings underline the importance for continued vaccine surveillance and the need for further studies to confirm these results and to determine their clinical implications in public health decision-making, especially for younger populations.
IMPORTANT (Myocarditis patients serious not transitory) – Outcomes at least 90 days since onset of myocarditis after mRNA COVID-19 vaccination in adolescents and young adults in the USA: a follow-up surveillance study https://www.thelancet.com/action/showPdf?pii=S2352-4642%2822%2900244-9
IMPORTANT (Thailand study – 30% of children participants registered elevated heart issues) – Cardiovascular Manifestation of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents https://www.mdpi.com/2414-6366/7/8/196
IMPORTANT (Incidence of myocarditis) – A Prospective Study of the Incidence of Myocarditis/Pericarditis and New Onset Cardiac Symptoms following Smallpox and Influenza Vaccination https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4368609/
IMPORTANT (Myocarditis risk) – Comparative Risk of Myocarditis/Pericarditis Following Second Doses of BNT162b2 and mRNA-1273 Coronavirus Vaccines https://www.jacc.org/doi/abs/10.1016/j.jacc.2022.08.799
Authors found:
“observed a 2- to 3-fold higher odds among individuals who received mRNA-1273 vs BNT162b2. The rate of myocarditis following mRNA-1273 receipt is highest among younger men (age 18-39 years) and does not seem to be present at older ages. Our findings may have policy implications regarding the choice of vaccine offered…
The rates of myocarditis and pericarditis per million second doses were higher for mRNA-1273 (n = 31, rate 35.6; 95% CI: 24.1-50.5; and n = 20, rate 22.9; 95% CI: 14.0-35.4, respectively) than BNT162b2 (n = 28, rate 12.6; 95% CI: 8.4-18.2 and n = 21, rate 9.4; 95% CI: 5.8-14.4, respectively). mRNA-1273 vs BNT162b2 had significantly higher odds of myocarditis (adjusted OR [aOR]: 2.78; 95% CI: 1.67-4.62), pericarditis (aOR: 2.42; 95% CI: 1.31-4.46) and myopericarditis (aOR: 2.63; 95% CI: 1.76-3.93). The association between mRNA-1273 and myocarditis was stronger for men (aOR: 3.21; 95% CI: 1.77-5.83) and younger age group (18-39 years; aOR: 5.09; 95% CI: 2.68-9.66).”
IMPORTANT (Safety) – Comparative Safety of BNT162b2 and mRNA-1273 Vaccines in a Nationwide Cohort of US Veterans https://jamanetwork.com/journals/jamainternalmedicine/fullarticle/2793236
Findings In this cohort study of 433 672 US veterans during 38 weeks of follow-up, recipients of the BNT162b2 vaccine, compared with recipients of the mRNA-1273 vaccine, had an excess per 10 000 persons of 10.9 ischemic stroke events, 14.8 myocardial infarction events, 11.3 other thromboembolic events, and 17.1 kidney injury events. Small-magnitude differences between the 2 vaccines were seen within 42 days of the first dose, and few differences were seen within 14 days of the first dose.
IMPORTANT (Nephropathy in patients) – New-Onset and Relapsed Membranous Nephropathy post
SARS-CoV-2 and COVID-19 Vaccination https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9611660/pdf/viruses-14-02143.pdf
Authors found: we collected 5 cases of MN associated with SARS-CoV-2 infection and 37 related to COVID-19 vaccination. Of these five cases, four (4/5, 80%) had acute kidney injury (AKI) at disease onset.
Phospholipase A2 receptor (PLA2R) in kidney tissue was negative in three (3/5, 60%) patients, and
no deposition of virus particles was measured among all patients. Conventional immunosuppressive
drugs could induce disease remission. The underlying pathogenesis included the subepithelial
deposition of viral antigens and aberrant immune response. New-onset and relapsed MN after
COVID-19 vaccination generally occurred within two weeks after the second dose of vaccine. Almost
27% of patients (10/37) suffered from AKI. In total, 11 of 14 cases showed positive for PLA2R, and
20 of 26 (76.9%) presented with an elevated serum phospholipase A2 receptor antibody (PLA2R-Ab),
in which 8 cases exceeded 50 RU/mL. Conventional immunosuppressive medications combined
with rituximab were found more beneficial to disease remission for relapsed patients. In contrast,
new-onset patients responded to conservative treatment. Overall, most patients (24/37, 64.9%) had a
favorable prognosis. Cross immunity and enhanced immune response might contribute to explaining
the mechanisms of MN post COVID-19 vaccination.
IMPORTANT (Case reports with peer reviewed links) – Compilation of 195 Case Reports Documenting 386 Vaccine Associated Hematological Injuries https://ashmedai.substack.com/p/compilation-of-184-case-reports-documenting
IMPORTANT (Visual issues in over 40 patients) – COVID-19 Vaccine-Associated Optic Neuropathy: A Systematic Review of 45 Patients https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9609672/pdf/vaccines-10-01758.pdf
IMPORTANT (Skin disorders post vaccination) – A systematic review on mucocutaneous presentations after COVID-19 vaccination and expert recommendations about vaccination of important immune-mediated dermatologic disorders https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9111423/pdf/DTH-35-0.pdf
IMPORTANT (Vaccine causing amyloidosis) – COVID-19 Infection and Vaccination and Its Relation to Amyloidosis: What Do We Know Currently? https://www.mdpi.com/2076-393X/11/7/1139
IMPORTANT (Psychosis linked to mRNA vaccination) – First Episode Psychosis Following COVID-19 Vaccination: a Case Report https://pubmed.ncbi.nlm.nih.gov/36170703/
Authors found: This article presents a patient, who after the second injection of the mRNA-based COVID-19 vaccine, immediately developed anxiety, nonspecific fear, and insomnia as the prodromal phase of psychosis. Starting from the second week, the patient manifested delusions of persecution, delusions of influence, thoughts insertion, and delusional behaviour, culminating in the suicide attempt. The duration of psychosis was eight weeks, and symptom reduction was observed only after the gradual administration of antipsychotics over four weeks. The investigations of the patient did not support any structural changes of the brain, any severe medical conditions, a neurological abnormality, a confusion or a state of unconsciousness or alterations in laboratory tests. Psychosis due to the use of alcohol or psychoactive substances was excluded. The psychological assessment of the patient demonstrated the endogenous type of thinking, and the patient had schizoid and paranoid personality traits strongly associated with schizophrenia. This case indicates a strong causal relationship between the mRNA-based COVID-19 vaccine injection and the onset of psychosis. We intend to follow up this case for possible development of schizophrenia and understand that the COVID-19 vaccine could possible play a trigger role in the development of primary psychosis. Longer-term supporting evidence is needed to estimate the prevalence of psychosis following vaccination with the mRNA-based COVID-19 vaccine.
IMPORTANT (Systematic review of psychological reactions post vaccination) – New-onset psychosis following COVID-19 vaccination: a systematic review https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2024.1360338/full
Results: A total of 21 articles described 24 cases of new-onset psychotic symptoms following COVID-19 vaccination. Of these cases, 54.2% were female, with a mean age of 33.71 ± 12.02 years. Psychiatric events were potentially induced by the mRNA BNT162b2 vaccine in 33.3% of cases, and psychotic symptoms appeared in 25% following the viral vector ChAdOx1 nCoV-19 vaccine. The mean onset time was 5.75 ± 8.14 days, mostly reported after the first or second dose. The duration of psychotic symptoms ranged between 1 and 2 months with a mean of 52.48 ± 60.07 days. Blood test abnormalities were noted in 50% of cases, mainly mild to moderate leukocytosis and elevated C-reactive protein. Magnetic resonance imaging results were abnormal in 20.8%, often showing fluid-attenuated inversion recovery hyperintensity in the white matter. Treatment included atypical antipsychotics in 83.3% of cases, typical antipsychotics in 37.5%, benzodiazepines in 50%, 20.8% received steroids, and 25% were prescribed antiepileptic medications. Overall, 50% of patients achieved full recovery.
Conclusion: Studies on psychiatric side effects post-COVID-19 vaccination are limited, and making conclusions on vaccine advantages or disadvantages is challenging. Vaccination is generally safe, but data suggest a potential link between young age, mRNA, and viral vector vaccines with new-onset psychosis within 7 days post-vaccination. Collecting data on vaccine-related psychiatric effects is crucial for prevention, and an algorithm for monitoring and treating mental health reactions post-vaccination is necessary for comprehensive management.
IMPORTANT (Neurological side effects from vaccination) – A review of neurological side effects of COVID-19 vaccination https://eurjmedres.biomedcentral.com/articles/10.1186/s40001-023-00992-0
IMPORTANT (Neurological side effects following vaccination in Italy) – NEURO-COVAX: An Italian Population-Based Study of Neurological Complications after COVID-19 Vaccinations https://www.mdpi.com/2076-393X/11/10/1621
IMPORTANT (Brain thrombosis) – Cerebral vein thrombosis after ChAdOx1 nCov-19 vaccination: Long-term outcome of four patients https://onlinelibrary.wiley.com/doi/10.1002/rth2.12844
IMPORTANT (Long term organ damage emerging post vaccination) – A Population-Based Analysis of the Risk of Glomerular Disease Relapse after COVID-19 Vaccination https://jasn.asnjournals.org/content/early/2022/11/04/ASN.2022030258.long
IMPORTANT (Thrombosis) – Analysis of Thromboembolic and Thrombocytopenic Events After the AZD1222, BNT162b2, and MRNA-1273 COVID-19 Vaccines in 3 Nordic Countries https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2793348
Results We found 265 339 hospital contacts, of whom 112 984 [43%] were for female patients, 246 092 [93%] were for patients born in 1971 or earlier, 116 931 [44%] were for coronary artery disease, 55 445 [21%] were for coagulation disorders, and 92 963 [35%] were for cerebrovascular disease. In the 28-day period following vaccination, there was an increased rate of coronary artery disease following mRNA-1273 vaccination (RR, 1.13 [95% CI, 1.02-1.25]), but not following AZD1222 vaccination (RR, 0.92 [95% CI, 0.82-1.03]) or BNT162b2 vaccination (RR, 0.96 [95% CI, 0.92-0.99]). There was an observed increased rate of coagulation disorders following all 3 vaccines (AZD1222: RR, 2.01 [95% CI, 1.75-2.31]; BNT162b2: RR, 1.12 [95% CI, 1.07-1.19]; and mRNA-1273: RR, 1.26 [95% CI, 1.07-1.47]). There was also an observed increased rate of cerebrovascular disease following all 3 vaccines (AZD1222: RR, 1.32 [95% CI, 1.16-1.52]; BNT162b2: RR, 1.09 [95% CI, 1.05-1.13]; and mRNA-1273: RR, 1.21 [95% CI, 1.09-1.35]). For individual diseases within the main outcomes, 2 notably high rates were observed: 12.04 (95% CI, 5.37-26.99) for cerebral venous thrombosis and 4.29 (95% CI, 2.96-6.20) for thrombocytopenia, corresponding to 1.6 (95% CI, 0.6-2.6) and 4.9 (95% CI, 2.9-6.9) excess events per 100 000 doses, respectively, following AZD1222 vaccination.
IMPORTANT (Pathologic antibodies increase thrombocytopenia and thrombosis as a result of vaccination) – Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination https://www.nejm.org/doi/full/10.1056/nejmoa2105385
IMPORTANT (Boosting severe adverse reaction risk) – Severe COVID-19 outcomes after full vaccination of primary schedule and initial boosters: pooled analysis of national prospective cohort studies of 30 million individuals in England, Northern Ireland, Scotland, and Wales https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(22)01656-7/fulltext
IMPORTANT (3.8% trigger for MS in vaccinated cases) – COVID-19 Vaccines Trigger MS Attacks in 3.8% of Sampled MS Patient Population @ Istanbul University Clinic https://www.trialsitenews.com/a/covid-19-vaccines-trigger-ms-attacks-in-3.8-of-sampled-ms-patient-population-istanbul-university-clinic-bdde8b29 Published: https://web.p.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=1301062X&AN=164569733&h=1VyqXN2pIvNqx2BCOrOlgsjQLqkFHMutzzjYgwk2nsjXGjL2FySD80r%2fsfZP4PIzWNulhqAafiAjuXyFYpaCIg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d1301062X%26AN%3d164569733
Pregnancy research following vaccination:
IMPORTANT (Pregnancy outcomes not severe post neonate infection) – Vertical Transmission and Neonatal Outcomes Following Maternal SARS-CoV-2 Infection During Pregnancy https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767921/
We review mechanisms of—and evidence for—vertical transmission of SARS-CoV-2, including transplacental, through other biospecimens and breastfeeding, and discuss neonatal outcomes following in utero exposure. Based on the available literature, we conclude vertical transmission of SARS-CoV-2 is rare, and exposed neonates generally show favorable health outcomes.
IMPORTANT (Pregnancy fetal health) Published Sept 2022 – Fetal supraventricular tachycardia and maternal COVID-19 vaccination: is there any relationship? https://pubmed.ncbi.nlm.nih.gov/36248062/
IMPORTANT (Pregnancy fetal health) – Assessment of Adverse Reactions, Antibody Patterns, and 12-month Outcomes in the Mother-Infant Dyad After COVID-19 mRNA Vaccination in Pregnancy https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2807260
Perinatal Outcomes
There were no differences in most perinatal outcomes between individuals who received either mRNA vaccine (eTable 3 in Supplement 1) although there was a difference in rates of preterm deliveries. The overall preterm delivery rate in our cohort was 5.3% (4 of 76 deliveries); all preterm deliveries were among mRNA-1237 recipients. Of those deliveries, 2 (50.0%) were spontaneous and 2 were medically indicated (1 scheduled cesarean for vasa previa at 34 weeks and 1 induction of labor for preeclampsia with severe features at 32 weeks).
Five pregnancies were affected by fetal anomalies (6.6%). Details regarding specific anomalies and timing of vaccination are given in eTable 4 in Supplement 1.
Third Dose Boosters and Breakthrough COVID-19 Infections
In total, 45 participants (59.2%) received a booster (third dose) after delivery (median [IQR], 36.4 [27.8-40.4] weeks after receipt of dose 2). We obtained blood samples from 10 participants (13.2%). Twelve individuals (15.7%) experienced a breakthrough infection (median [IQR], 44.9 [38.4-48.1] weeks after receipt of dose 2). Additional blood samples were collected from those participants 4 to 8 weeks after receipt of dose 3 or breakthrough infection. In eFigure 4 in Supplement 1, we show the individual longitudinal IgG titer trajectories of each participant. In all trimesters of initial vaccination, a third vaccine dose or COVID-19 infection elicited increases in IgG titers. There was no difference in mean IgG titers after receipt of dose 3 vs after COVID-19 infection (3629 vs 4557 RFU; P = .34). The rate of maternal COVID-19 infection during the Omicron wave in early 2022 was 16%, all after vaccine dose 3.
IMPORTANT (Pulmonary fibrosis) – COVID-19 Infection May Drive EC-like Myofibroblasts towards Myofibroblasts to Contribute to Pulmonary Fibrosis https://www.mdpi.com/1422-0067/24/14/11500
IMPORTANT (Cancer acceleration) – Rapid Progression of Angioimmunoblastic T Cell Lymphoma Following BNT162b2 mRNA Vaccine Booster Shot: A Case Report https://www.frontiersin.org/articles/10.3389/fmed.2021.798095/full
IMPORTANT (Cancer acceleration) – Bell’s palsy or an aggressive infiltrating basaloid carcinoma post-mRNA vaccination for COVID-19? A case report and review of the literature https://pubmed.ncbi.nlm.nih.gov/37927346/
The malignancy was of cutaneous origin and the case showed symptoms consistent with Bell’s palsy and trigeminal neuralgia beginning four days post-vaccination (right side head temporal pain). The temporal pain was suggestive for inflammation and impairment of T cell immune activation. Magnetic Resonance Imaging (MRI) showed a vascular loop on the left lateral aspect of the 5th cranial root exit of cerebellopontine angle constituting presumably a normal variant and was considered as an unrelated factor to the right-sided palsy and pain symptoms that corresponded to cranial nerves V (trigeminal nerve) and VII (facial nerve). In this study we describe all aspects of this case and discuss possible causal links between the rapid emergence of this metastatic cancer and mRNA vaccination. We place this within the context of multiple immune impairments potentially related to the mRNA injections that would be expected to potentiate more aggressive presentation and progression of cancer. The type of malignancy we describe suggests a population risk for occurrence of a large variety of relatively common basaloid phenotype cancer cells, which may have the potential for metastatic disease. This can be avoidable with early diagnosis and adequate treatment. Since facial paralysis/pain is one of the more common adverse neurological events following mRNA injection, careful inspection of cutaneous/soft tissue should be conducted to rule out malignancy. An extensive literature review is carried out, in order to elucidate the toxicity of mRNA vaccination that may have led to the death of this patient. Preventive and precise routine clinical investigations can potentially avoid future mortalities. See also Figure 1(Fig. 1).
IMPORTANT (Cancer acceleration) – B-cell lymphoblastic lymphoma following intravenous BNT162b2 mRNA booster in a BALB/c mouse: A case report https://www.frontiersin.org/articles/10.3389/fonc.2023.1158124/full
Authors found:
“we present the first case of B-cell lymphoblastic lymphoma following intravenous high-dose mRNA COVID-19 vaccination (BNT162b2) in a BALB/c mouse. Two days following booster vaccination (i.e., 16 days after prime), at only 14 weeks of age, our animal suffered spontaneous death with marked organomegaly and diffuse malignant infiltration of multiple extranodal organs (heart, lung, liver, kidney, spleen) by lymphoid neoplasm. Immunohistochemical examination revealed organ sections positive for CD19, terminal deoxynucleotidyl transferase, and c-MYC, compatible with a B-cell lymphoblastic lymphoma immunophenotype.”
IMPORTANT (Cancer acceleration) –The SARS-CoV-2 Spike Protein Activates the Epidermal Growth Factor Receptor-Mediated Signaling https://www.mdpi.com/2076-393X/11/4/768
Authors found:
“Here, we wanted to investigate if other molecular targets and pathways may be used by SARS-CoV-2. We investigated the possibility of the spike 1 S protein and its receptor-binding domain (RBD) to target the epidermal growth factor receptor (EGFR) and its downstream signaling pathway in vitro using the lung cancer cell line (A549 cells). Protein expression and phosphorylation were examined upon cell treatment with the recombinant full spike 1 S protein or RBD. We demonstrate for the first time the activation of EGFR by the Spike 1 protein associated with the phosphorylation of the canonical Extracellular signal-regulated kinase1/2 (ERK1/2) and AKT kinases and an increase in survivin expression controlling the survival pathway. Our study suggests the putative implication of EGFR and its related signaling pathways in SARS-CoV-2 infectivity and COVID-19 pathology.”
- LINKED TO ABOVE – The Role of Epidermal Growth Factor Receptor in Cancer Metastasis and Microenvironment https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3748428/
- “The process of cancer metastasis depends on multiple interactions between cancer cells and host cells. Studies investigating the TGFα-EGFR signaling pathways that promote the growth and spread of cancer cells. Moreover, the signaling activates not only tumor cells, but also tumor-associated endothelial cells. TGFα-EGFR signaling in colon cancer cells creates a microenvironment that is conducive for metastasis, providing a rationale for efforts to inhibit EGFR signaling in TGFα-positive cancers.”
IMPORTANT (Thrombocytopenia) – First-dose ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland https://pubmed.ncbi.nlm.nih.gov/34108714/
IMPORTANT (Atrial Fibrillation) – Atrial fibrillation after vaccination for COVID-19: analysis of the vaccine adverse event reporting system https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175153/
IMPORTANT (Bells Palsy systematic review) – Bell’s Palsy Following SARS-CoV-2 Vaccines: A Systematic Review and Meta-Analysis https://www.medrxiv.org/content/10.1101/2022.10.26.22281537v1
IMPORTANT – Acquired hemophilia A following COVID-19 vaccination – The importance of prompt diagnosis: A case report https://www.trasci.com/article/S1473-0502(22)00269-5/fulltext
IMPORTANT – Four cases of cytokine storm after COVID-19 vaccination: Case report https://pubmed.ncbi.nlm.nih.gov/36045681/
IMPORTANT – Case report: Case series of isolated acute pericarditis after SARS-CoV-2 vaccinations https://pubmed.ncbi.nlm.nih.gov/36061550/
VERY IMPORTANT (Aug 2022 study – Thailand – baseline study showing 2.33% of cardiac events after vaccination – 23,300 per million ) – Cardiovascular Effects of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents https://www.preprints.org/manuscript/202208.0151/v1
Authors found: Seven participants (2.33%) exhibited at least one elevated cardiac biomarker or positive lab assessments. Cardiovascular effects were found in 29.24% of patients, ranging from tachycardia, palpitation, and myopericarditis. Myopericarditis was confirmed in one patient after vaccination. Two patients had suspected pericarditis and four patients had suspected subclinical myocarditis. Conclusion: Cardiovascular effects in adolescents after BNT162b2 mRNA COVID-19 vaccination included tachycardia, palpitation, and myocarditis. The clinical presentation of myopericarditis after vaccination was usually mild, with all cases fully recovering within 14 days. Hence, adolescents receiving mRNA vaccines should be monitored for side effects. Clinical Trial Registration: NCT05288231
IMPORTANT (Heart arrhythmias after vaccination) – Arrhythmias after COVID-19 Vaccination: Have We Left All Stones Unturned? https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299473/
IMPORTANT (Heart arrhythmias after vaccination) – Cardiac Arrhythmia after COVID-19 Vaccination versus Non–COVID-19 Vaccination: A Systematic Review and Meta-Analysis https://www.medrxiv.org/content/10.1101/2022.11.21.22282554v1
IMPORTANT – COVID-19 vaccines effect on blood pressure https://www.ejinme.com/article/S0953-6205(22)00305-3/fulltext
IMPORTANT (Menstrual issues after vaccination) – Association between SARS-CoV-2 vaccination and healthcare contacts for menstrual disturbance and bleeding in women before and after menopause: nationwide, register based cohort study https://www.bmj.com/content/381/bmj-2023-074778
IMPORTANT (Covid-19 not connected with myocarditis incidence. Implications for all risk of myocarditis from vaccines) Israel study published Apr 2022 – The Incidence of Myocarditis and Pericarditis in Post COVID-19 Unvaccinated Patients-A Large Population-Based Study https://pubmed.ncbi.nlm.nih.gov/35456309/
IMPORTANT (Vaccine causes tinnitus) – COVID-19 vaccination-related tinnitus is associated with pre-vaccination metabolic disorders https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1374320/full
Cases of tinnitus have been reported following administration of COVID-19 vaccines. The aim of this study was to characterize COVID-19 vaccination-related tinnitus to assess whether there is a causal relationship, and to examine potential risk factors for COVID-19 vaccination-related tinnitus. We analyzed a survey on 398 cases of COVID-19 vaccination-related tinnitus, and 699,839 COVID-19 vaccine-related reports in the Vaccine Adverse Effect Reporting System (VAERS) database that was retrieved on 4 December 2021. We found that following COVID-19 vaccination, 1) tinnitus report frequencies for Pfizer, Moderna and Janssen vaccines in VAERS are 47, 51 and 70 cases per million full vaccination; 2) the symptom onset was often rapid; 3) more women than men reported tinnitus and the sex difference increased with age; 4) for 2-dose vaccines, the frequency of tinnitus was higher following the first dose than the second dose; 5) for 2-dose vaccines, the chance of worsening tinnitus symptoms after second dose was approximately 50%; 6) tinnitus was correlated with other neurological and psychiatric symptoms; 7) pre-existing metabolic syndromes were correlated with the severity of the reported tinnitus. These findings suggest that COVID-19 vaccination increases the risk of tinnitus, and metabolic disorders is a risk factor for COVID-19 vaccination-related tinnitus.
IMPORTANT Published July 2022 – Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following covid-19 vaccination: living evidence syntheses and review https://pubmed.ncbi.nlm.nih.gov/35830976/
IMPORTANT (Risk benefit for young adults boosters – 100 times more likely to suffer harms) – Covid-19 vaccine boosters for young adults: A risk-benefit assessment and five ethical arguments against mandates at universities https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4206070
IMPORTANT – COVID-19 mRNA vaccination leading to CNS inflammation: a case series https://link.springer.com/article/10.1007/s00415-021-10780-7
IMPORTANT – Hyperacute reversible encephalopathy related to cytokine storm following COVID-19 vaccine https://pubmed.ncbi.nlm.nih.gov/34284342/
IMPORTANT Published June 24, 2022 – Epidemiology of Myocarditis and Pericarditis Following mRNA Vaccination by Vaccine Product, Schedule, and Interdose Interval Among Adolescents and Adults in Ontario, Canada https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2793551
IMPORTANT POLICY – The Safety of COVID-19 Vaccinations—We Should Rethink the Policy https://www.mdpi.com/2076-393X/9/7/693
IMPORTANT – Receipt of mRNA Covid-19 Vaccines and Risk of Spontaneous Abortion https://www.nejm.org/doi/full/10.1056/NEJMc2113891
IMPORTANT – Spectrum of neurological complications following COVID-19 vaccination https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557950/
IMPORTANT – VAERS-reported new-onset seizures following use of COVID-19 vaccinations as compared to influenza vaccinations https://pubmed.ncbi.nlm.nih.gov/35599598/
IMPORTANT – Increased emergency cardiovascular events among under-40 population in Israel during vaccine rollout and third COVID-19 wave https://www.nature.com/articles/s41598-022-10928-z
IMPORTANT – Multisystem Inflammatory Syndrome after Breakthrough SARS-CoV-2 Infection in 2 Immunized Adolescents, United States https://wwwnc.cdc.gov/eid/article/28/7/22-0560_article
IMPORTANT – Newly developed type 1 diabetes after coronavirus disease 2019 vaccination: A case report https://pubmed.ncbi.nlm.nih.gov/35088548/
IMPORTANT – Towards the emergence of a new form of the neurodegenerative Creutzfeldt-Jakob disease: Twenty six cases of CJD declared a few days after a COVID-19 “vaccine” Jab https://www.researchgate.net/publication/358661859_Towards_the_emergence_of_a_new_form_of_the_neurodegenerative_Creutzfeldt-Jakob_disease_Twenty_six_cases_of_CJD_declared_a_few_days_after_a_COVID-19_vaccine_Jab
IMPORTANT – SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988450/
IMPORTANT – The potential neurological effect of the COVID-19 vaccines: A review https://pubmed.ncbi.nlm.nih.gov/33779985/
IMPORTANT – Hemophagocytic Lymphohistiocytosis Following BNT162b2 mRNA COVID-19 Vaccination https://pubmed.ncbi.nlm.nih.gov/35455321/
IMPORTANT – Increased emergency cardiovascular events among under-40 population in Israel during vaccine rollout and third COVID-19 wave https://www.nature.com/articles/s41598-022-10928-z#Sec14
IMPORTANT – Side Effects of COVID-19 Pfizer-BioNTech mRNA Vaccine in Children Aged 12-18 Years in Saudi Arabia https://pubmed.ncbi.nlm.nih.gov/34835228/
IMPORTANT – SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis https://www.sciencedirect.com/science/article/pii/S0168827822002343
IMPORTANT – Activation or exhaustion of CD8+ T cells in patients with COVID-19 https://www.nature.com/articles/s41423-021-00750-4
IMPORTANT – T-cell exhaustion in the tumor microenvironment https://www.nature.com/articles/cddis2015162
IMPORTANT – SARS-CoV-2 Vaccination and Myocarditis in a Nordic Cohort Study of 23 Million Residents https://jamanetwork.com/journals/jamacardiology/fullarticle/2791253?guestAccessKey=b76ffbb1-d5c4-4f00-add1-a30d0dce45e7
IMPORTANT (Myocarditis risk 8 and 30 times higher from Pfizer and moderna respectively) – Risk of myocarditis following sequential COVID-19 vaccinations by age and sex https://www.medrxiv.org/content/10.1101/2021.12.23.21268276v1 Published https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.122.059970
IMPORTANT (Vaccine leukemia) – Ph-Positive B-Cell Acute Lymphoblastic Leukemia Occurring after Receipt of Bivalent SARS-CoV-2 mRNA Vaccine Booster: A Case Report https://www.mdpi.com/1648-9144/59/3/627
(Possible mechanism related to the jabs) – Acute presentation of a hidden cardiac amyloidosis and microvascular occlusion revealed by CMR https://www.eurorad.org/case/16643
Association of Stress-Related Disorders With Subsequent Autoimmune Disease https://jamanetwork.com/journals/jama/article-abstract/2685155
Determinants of COVID-19 Vaccine-Induced Myocarditis Requiring Hospitalization https://zenodo.org/record/6556390 https://jessicar.substack.com/p/determinants-of-covid-19-vaccine?s=r
Cerebral venous thrombosis after COVID-19 vaccination in the UK: a multicentre cohort study: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01608-1/
Vaccine-induced immune thrombotic thrombocytopenia with disseminated intravascular coagulation and death after ChAdOx1 nCoV-19 vaccination: https://www.sciencedirect.com/science/article/pii/S1052305721003414
Fatal cerebral hemorrhage after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928772/
Myocarditis after mRNA vaccination against SARS-CoV-2, a case series: https://www.sciencedirect.com/science/article/pii/S2666602221000409
IMPORTANT (Damage to the gut bacteria) – S2099 Persistent Damage to the Gut Microbiome Following Messenger RNA SARS-CoV-2 Vaccine https://www.researchgate.net/publication/367123139_S2099_Persistent_Damage_to_the_Gut_Microbiome_Following_Messenger_RNA_SARS-CoV-2_Vaccine
Three cases of acute venous thromboembolism in women after vaccination against COVID-19: https://www.sciencedirect.com/science/article/pii/S2213333X21003929
Acute thrombosis of the coronary tree after vaccination against COVID-19: https://www.sciencedirect.com/science/article/abs/pii/S1936879821003988
US case reports of cerebral venous sinus thrombosis with thrombocytopenia after vaccination with Ad26.COV2.S (against covid-19), March 2 to April 21, 2020: https://pubmed.ncbi.nlm.nih.gov/33929487/
Portal vein thrombosis associated with ChAdOx1 nCov-19 vaccine: https://www.thelancet.com/journals/langas/article/PIIS2468-1253(21)00197-7/
Management of cerebral and splanchnic vein thrombosis associated with thrombocytopenia in subjects previously vaccinated with Vaxzevria (AstraZeneca): position statement of the Italian Society for the Study of Hemostasis and Thrombosis (SISET): https://pubmed.ncbi.nlm.nih.gov/33871350/
Vaccine-induced immune immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with COVID-19; a systematic review: https://www.sciencedirect.com/science/article/pii/S0022510X21003014
Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0735675721004381
Covid-19 vaccine-induced thrombosis and thrombocytopenia: a commentary on an important and practical clinical dilemma: https://www.sciencedirect.com/science/article/abs/pii/S0033062021000505
Thrombosis with thrombocytopenia syndrome associated with COVID-19 viral vector vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0953620521001904
COVID-19 vaccine-induced immune-immune thrombotic thrombocytopenia: an emerging cause of splanchnic vein thrombosis: https://www.sciencedirect.com/science/article/pii/S1665268121000557
The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune thrombotic immune thrombocytopenia (covid): https://www.sciencedirect.com/science/article/pii/S1050173821000967
Roots of autoimmunity of thrombotic events after COVID-19 vaccination: https://www.sciencedirect.com/science/article/abs/pii/S1568997221002160
Cerebral venous sinus thrombosis after vaccination: the United Kingdom experience: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01788-8/fulltext
Thrombotic immune thrombocytopenia induced by SARS-CoV-2 vaccine: https://www.nejm.org/doi/full/10.1056/nejme2106315
Myocarditis after immunization with COVID-19 mRNA vaccines in members of the US military. This article reports that in “23 male patients, including 22 previously healthy military members, myocarditis was identified within 4 days after receipt of the vaccine”: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601
Thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://www.nejm.org/doi/full/10.1056/NEJMoa2104882?query=recirc_curatedRelated_article
Association of myocarditis with the BNT162b2 messenger RNA COVID-19 vaccine in a case series of children: https://pubmed.ncbi.nlm.nih.gov/34374740/
Thrombotic thrombocytopenia after vaccination with ChAdOx1 nCov-19: https://www.nejm.org/doi/full/10.1056/NEJMoa2104840?query=recirc_curatedRelated_article
Post-mortem findings in vaccine-induced thrombotic thrombocytopenia (covid-19): https://haematologica.org/article/view/haematol.2021.279075
Thrombocytopenia, including immune thrombocytopenia after receiving COVID-19 mRNA vaccines reported to the Vaccine Adverse Event Reporting System (VAERS): https://www.sciencedirect.com/science/article/pii/S0264410X21005247
Acute symptomatic myocarditis in seven adolescents after Pfizer-BioNTech COVID-19 vaccination: https://pediatrics.aappublications.org/content/early/2021/06/04/peds.2021-052478
Aphasia seven days after the second dose of an mRNA-based SARS-CoV-2 vaccine. Brain MRI revealed an intracerebral hemorrhage (ICBH) in the left temporal lobe in a 52-year-old man. https://www.sciencedirect.com/science/article/pii/S2589238X21000292#f0005
Comparison of vaccine-induced thrombotic episodes between ChAdOx1 nCoV-19 and Ad26.COV.2.S vaccines: https://www.sciencedirect.com/science/article/abs/pii/S0896841121000895
Hypothesis behind the very rare cases of thrombosis with thrombocytopenia syndrome after SARS-CoV-2 vaccination: https://www.sciencedirect.com/science/article/abs/pii/S0049384821003315
Blood clots and bleeding episodes after BNT162b2 and ChAdOx1 nCoV-19 vaccination: analysis of European data: https://www.sciencedirect.com/science/article/pii/S0896841121000937
Cerebral venous thrombosis after BNT162b2 mRNA SARS-CoV-2 vaccine: https://www.sciencedirect.com/science/article/abs/pii/S1052305721003098
Primary adrenal insufficiency associated with thrombotic immune thrombocytopenia induced by the Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (VITT): https://www.sciencedirect.com/science/article/pii/S0953620521002363
Myocarditis and pericarditis after vaccination with COVID-19 mRNA: practical considerations for care providers: https://www.sciencedirect.com/science/article/pii/S0828282X21006243
“Portal vein thrombosis occurring after the first dose of SARS-CoV-2 mRNA vaccine in a patient with antiphospholipid syndrome”: https://www.sciencedirect.com/science/article/pii/S2666572721000389
Early results of bivalirudin treatment for thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with Ad26.COV2.S: https://www.sciencedirect.com/science/article/pii/S0196064421003425
Myocarditis, pericarditis and cardiomyopathy after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S1443950621011562
Mechanisms of immunothrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection: https://www.sciencedirect.com/science/article/abs/pii/S0896841121000706
Prothrombotic immune thrombocytopenia after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0006497121009411
Vaccine-induced thrombotic thrombocytopenia: the dark chapter of a success story: https://www.sciencedirect.com/science/article/pii/S2589936821000256
Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin based anticoagulation: https://www.sciencedirect.com/science/article/pii/S1871402121002046
Thrombosis after COVID-19 vaccination: possible link to ACE pathways: https://www.sciencedirect.com/science/article/pii/S0049384821004369
Cerebral venous sinus thrombosis in the U.S. population after SARS-CoV-2 vaccination with adenovirus and after COVID-19: https://www.sciencedirect.com/science/article/pii/S0735109721051949
A rare case of a middle-aged Asian male with cerebral venous thrombosis after AstraZeneca COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0735675721005714
Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination: report of two cases in the United Kingdom: https://www.sciencedirect.com/science/article/abs/pii/S088915912100163X
Immune thrombocytopenic purpura after vaccination with COVID-19 vaccine (ChAdOx1 nCov-19): https://www.sciencedirect.com/science/article/abs/pii/S0006497121013963.
Antiphospholipid antibodies and risk of thrombophilia after COVID-19 vaccination: the straw that breaks the camel’s back?: https://docs.google.com/document/d/1XzajasO8VMMnC3CdxSBKks1o7kiOLXFQ
Vaccine-induced thrombotic thrombocytopenia, a rare but severe case of friendly fire in the battle against the COVID-19 pandemic: What pathogenesis?: https://www.sciencedirect.com/science/article/pii/S0953620521002314
Diagnostic-therapeutic recommendations of the ad-hoc FACME expert working group on the management of cerebral venous thrombosis related to COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0213485321000839
Thrombocytopenia and intracranial venous sinus thrombosis after exposure to the “AstraZeneca COVID-19 vaccine”: https://pubmed.ncbi.nlm.nih.gov/33918932/
Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33606296/
Severe and refractory immune thrombocytopenia occurring after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33854395/
Purpuric rash and thrombocytopenia after mRNA-1273 (Modern) COVID-19 vaccine: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996471/
COVID-19 vaccination: information on the occurrence of arterial and venous thrombosis using data from VigiBase: https://pubmed.ncbi.nlm.nih.gov/33863748/
Cerebral venous thrombosis associated with the covid-19 vaccine in Germany: https://onlinelibrary.wiley.com/doi/10.1002/ana.26172
Cerebral venous thrombosis following BNT162b2 mRNA vaccination of BNT162b2 against SARS-CoV-2: a black swan event: https://pubmed.ncbi.nlm.nih.gov/34133027/
The importance of recognizing cerebral venous thrombosis following anti-COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34001390/
Thrombosis with thrombocytopenia after messenger RNA vaccine -1273: https://pubmed.ncbi.nlm.nih.gov/34181446/
Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccination: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34174723/
First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic, and hemorrhagic events in Scotland: https://www.nature.com/articles/s41591-021-01408-4
Exacerbation of immune thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34075578/
First report of a de novo iTTP episode associated with a COVID-19 mRNA-based anti-COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34105244/
PF4 immunoassays in vaccine-induced thrombotic thrombocytopenia: https://www.nejm.org/doi/full/10.1056/NEJMc2106383
Antibody epitopes in vaccine-induced immune immune thrombotic thrombocytopenia: https://www.nature.com/articles/s41586-021-03744-4
Myocarditis with COVID-19 mRNA vaccines: https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.056135
Myocarditis and pericarditis after COVID-19 vaccination: https://jamanetwork.com/journals/jama/fullarticle/2782900
Myocarditis temporally associated with COVID-19 vaccination: https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.121.055891.
COVID-19 Vaccination Associated with Myocarditis in Adolescents: https://pediatrics.aappublications.org/content/pediatrics/early/2021/08/12/peds.2021-053427.full.pdf
Acute myocarditis after administration of BNT162b2 vaccine against COVID-19: https://pubmed.ncbi.nlm.nih.gov/33994339/
Temporal association between COVID-19 vaccine Ad26.COV2.S and acute myocarditis: case report and review of the literature: https://www.sciencedirect.com/science/article/pii/S1553838921005789
COVID-19 vaccine-induced myocarditis: a case report with review of the literature: https://www.sciencedirect.com/science/article/pii/S1871402121002253
Potential association between COVID-19 vaccine and myocarditis: clinical and CMR findings: https://www.sciencedirect.com/science/article/pii/S1936878X2100485X
Recurrence of acute myocarditis temporally associated with receipt of coronavirus mRNA disease vaccine 2019 (COVID-19) in a male adolescent: https://www.sciencedirect.com/science/article/pii/S002234762100617X
Fulminant myocarditis and systemic hyper inflammation temporally associated with BNT162b2 COVID-19 mRNA vaccination in two patients: https://www.sciencedirect.com/science/article/pii/S0167527321012286.
Acute myocarditis after administration of BNT162b2 vaccine: https://www.sciencedirect.com/science/article/pii/S2214250921001530
Lymphohistocytic myocarditis after vaccination with COVID-19 Ad26.COV2.S viral vector: https://www.sciencedirect.com/science/article/pii/S2352906721001573
Myocarditis following vaccination with BNT162b2 in a healthy male: https://www.sciencedirect.com/science/article/pii/S0735675721005362
Acute myocarditis after Comirnaty (Pfizer) vaccination in a healthy male with previous SARS-CoV-2 infection: https://www.sciencedirect.com/science/article/pii/S1930043321005549
Myopericarditis after Pfizer mRNA COVID-19 vaccination in adolescents: https://www.sciencedirect.com/science/article/pii/S002234762100665X
Pericarditis after administration of BNT162b2 mRNA COVID-19 mRNA vaccine: https://www.sciencedirect.com/science/article/pii/S1885585721002218
Acute myocarditis after vaccination with SARS-CoV-2 mRNA-1273 mRNA: https://www.sciencedirect.com/science/article/pii/S2589790X21001931
Temporal relationship between the second dose of BNT162b2 mRNA Covid-19 vaccine and cardiac involvement in a patient with previous SARS-COV-2 infection: https://www.sciencedirect.com/science/article/pii/S2352906721000622
Myopericarditis after vaccination with COVID-19 mRNA in adolescents 12 to 18 years of age: https://www.sciencedirect.com/science/article/pii/S0022347621007368Acute myocarditis after SARS-CoV-2 vaccination in a 24-year-old man: https://www.sciencedirect.com/science/article/pii/S0870255121003243
Important information on myopericarditis after vaccination with Pfizer COVID-19 mRNA in adolescents: https://www.sciencedirect.com/science/article/pii/S0022347621007496
A series of patients with myocarditis after vaccination against SARS-CoV-2 with mRNA-1279 and BNT162b2: https://www.sciencedirect.com/science/article/pii/S1936878X21004861
Takotsubo cardiomyopathy after vaccination with mRNA COVID-19: https://www.sciencedirect.com/science/article/pii/S1443950621011331
COVID-19 mRNA vaccination and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34268277/
COVID-19 vaccine and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34399967/
Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resourc e/en/covidwho-1360706.
COVID-19 vaccines and myocarditis: https://pubmed.ncbi.nlm.nih.gov/34246566/
Myocarditis and other cardiovascular complications of COVID-19 mRNA-based COVID-19 vaccines https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-comp lications-of-the-mrna-based-covid-19-vaccines https://www.cureus.com/articles/61030-myocarditis-and-other-cardiovascular-complications-of-the-mrna-based-covid-19-vaccines
Myocarditis, pericarditis, and cardiomyopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34340927/
Myocarditis with covid-19 mRNA vaccines: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056135
Association of myocarditis with COVID-19 mRNA vaccine in children: https://media.jamanetwork.com/news-item/association-of-myocarditis-with-mrna-co vid-19-vaccine-in-children/
Association of myocarditis with COVID-19 messenger RNA vaccine BNT162b2 in a case series of children: https://jamanetwork.com/journals/jamacardiology/fullarticle/2783052
Myocarditis after immunization with COVID-19 mRNA vaccines in members of the U.S. military: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781601%5C
Myocarditis occurring after immunization with COVID-19 mRNA-based COVID-19 vaccines: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781600
Myocarditis following immunization with Covid-19 mRNA: https://www.nejm.org/doi/full/10.1056/NEJMc2109975
Patients with acute myocarditis after vaccination withCOVID-19 mRNA: https://jamanetwork.com/journals/jamacardiology/fullarticle/2781602
Myocarditis associated with vaccination with COVID-19 mRNA: https://pubs.rsna.org/doi/10.1148/radiol.2021211430
Symptomatic Acute Myocarditis in 7 Adolescents after Pfizer-BioNTech COVID-19 Vaccination: https://pediatrics.aappublications.org/content/148/3/e2021052478
Cardiovascular magnetic resonance imaging findings in young adult patients with acute myocarditis after COVID-19 mRNA vaccination: a case series: https://jcmr-online.biomedcentral.com/articles/10.1186/s12968-021-00795-4
Clinical Guidance for Young People with Myocarditis and Pericarditis after Vaccination with COVID-19 mRNA: https://www.cps.ca/en/documents/position/clinical-guidance-for-youth-with-myocarditis-and-pericarditis
Cardiac imaging of acute myocarditis after vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34402228/
Case report: acute myocarditis after second dose of mRNA-1273 SARS-CoV-2 mRNA vaccine: https://academic.oup.com/ehjcr/article/5/8/ytab319/6339567
Myocarditis / pericarditis associated with COVID-19 vaccine: https://science.gc.ca/eic/site/063.nsf/eng/h_98291.html
Transient cardiac injury in adolescents receiving the BNT162b2 mRNA COVID-19 vaccine: https://journals.lww.com/pidj/Abstract/9000/Transient_Cardiac_Injury_in_Adolesce nts_Receiving.95800.aspx
Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccine: https://academic.oup.com/jpids/advance-article/doi/10.1093/jpids/piab060/6329543
The new COVID-19 mRNA vaccine platform and myocarditis: clues to the possible underlying mechanism: https://pubmed.ncbi.nlm.nih.gov/34312010/
Acute myocardial injury after COVID-19 vaccination: a case report and review of current evidence from the Vaccine Adverse Event Reporting System database: https://pubmed.ncbi.nlm.nih.gov/34219532/
Be alert to the risk of adverse cardiovascular events after COVID-19 vaccination: https://www.xiahepublishing.com/m/2472-0712/ERHM-2021-00033
Myocarditis associated with COVID-19 vaccination: echocardiographic, cardiac tomography, and magnetic resonance imaging findings: https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.121.013236
In-depth evaluation of a case of presumed myocarditis after the second dose of COVID-19 mRNA vaccine: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.121.056038
Occurrence of acute infarct-like myocarditis after COVID-19 vaccination: just an accidental coincidence or rather a vaccination-associated autoimmune myocarditis?: https://pubmed.ncbi.nlm.nih.gov/34333695/
Recurrence of acute myocarditis temporally associated with receipt of coronavirus mRNA disease vaccine 2019 (COVID-19) in a male adolescent: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8216855/
Myocarditis after SARS-CoV-2 vaccination: a vaccine-induced reaction?: https://pubmed.ncbi.nlm.nih.gov/34118375/
Self-limited myocarditis presenting with chest pain and ST-segment elevation in adolescents after vaccination with the BNT162b2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34180390/
Myopericarditis in a previously healthy adolescent male after COVID-19 vaccination: Case report: https://pubmed.ncbi.nlm.nih.gov/34133825/
Biopsy-proven lymphocytic myocarditis after first COVID-19 mRNA vaccination in a 40-year-old man: case report: https://pubmed.ncbi.nlm.nih.gov/34487236/
Insights from a murine model of COVID-19 mRNA vaccine-induced myopericarditis: could accidental intravenous injection of a vaccine induce myopericarditis https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab741/6359059
Unusual presentation of acute perimyocarditis after modern SARS-COV-2 mRNA-1237 vaccination: https://pubmed.ncbi.nlm.nih.gov/34447639/
Perimyocarditis after the first dose of mRNA-1273 SARS-CoV-2 (Modern) mRNA-1273 vaccine in a young healthy male: case report: https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-021-02183
Acute myocarditis after the second dose of SARS-CoV-2 vaccine: serendipity or causal relationship: https://pubmed.ncbi.nlm.nih.gov/34236331/
Rhabdomyolysis and fasciitis induced by the COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34435250/
COVID-19 vaccine-induced rhabdomyolysis: case report with literature review: https://pubmed.ncbi.nlm.nih.gov/34186348/.
GM1 ganglioside antibody and COVID-19-related Guillain Barre syndrome: case report, systemic review, and implications for vaccine development: https://www.sciencedirect.com/science/article/pii/S2666354621000065
Guillain-Barré syndrome after AstraZeneca COVID-19 vaccination: causal or casual association: https://www.sciencedirect.com/science/article/pii/S0303846721004169
Sensory Guillain-Barré syndrome after ChAdOx1 nCov-19 vaccine: report of two cases and review of the literature: https://www.sciencedirect.com/science/article/pii/S0165572821002186
Guillain-Barré syndrome after the first dose of SARS-CoV-2 vaccine: a temporary occurrence, not a causal association: https://www.sciencedirect.com/science/article/pii/S2214250921000998.
Guillain-Barré syndrome presenting as facial diplegia after vaccination with COVID-19: a case report: https://www.sciencedirect.com/science/article/pii/S0736467921006442
Guillain-Barré syndrome after the first injection of ChAdOx1 nCoV-19 vaccine: first report: https://www.sciencedirect.com/science/article/pii/S0035378721005853.
SARS-CoV-2 vaccines are not safe for those with Guillain-Barre syndrome following vaccination: https://www.sciencedirect.com/science/article/pii/S2049080121005343
Acute hyperactive encephalopathy following COVID-19 vaccination with dramatic response to methylprednisolone: a case report: https://www.sciencedirect.com/science/article/pii/S2049080121007536
Facial nerve palsy following administration of COVID-19 mRNA vaccines: analysis of self-report database: https://www.sciencedirect.com/science/article/pii/S1201971221007049
Neurological symptoms and neuroimaging alterations related to COVID-19 vaccine: cause or coincidence: https://www.sciencedirect.com/science/article/pii/S0899707121003557.
New-onset refractory status epilepticus after ChAdOx1 nCoV-19 vaccination: https://www.sciencedirect.com/science/article/pii/S0165572821001569
Acute myelitis and ChAdOx1 nCoV-19 vaccine: coincidental or causal association: https://www.sciencedirect.com/science/article/pii/S0165572821002137
Bell’s palsy and SARS-CoV-2 vaccines: an unfolding story: https://www.sciencedirect.com/science/article/pii/S1473309921002735
Bell’s palsy after the second dose of the Pfizer COVID-19 vaccine in a patient with a history of recurrent Bell’s palsy: https://www.sciencedirect.com/science/article/pii/S266635462100020X
Acute-onset central serous retinopathy after immunization with COVID-19 mRNA vaccine:. https://www.sciencedirect.com/science/article/pii/S2451993621001456.
Bell’s palsy after COVID-19 vaccination: case report: https://www.sciencedirect.com/science/article/pii/S217358082100122X.
An academic hospital experience assessing the risk of COVID-19 mRNA vaccine using patient’s allergy history: https://www.sciencedirect.com/science/article/pii/S2213219821007972
COVID-19 vaccine-induced axillary and pectoral lymphadenopathy in PET: https://www.sciencedirect.com/science/article/pii/S1930043321002612
ANCA-associated vasculitis after Pfizer-BioNTech COVID-19 vaccine: https://www.sciencedirect.com/science/article/pii/S0272638621007423
Late cutaneous reactions after administration of COVID-19 mRNA vaccines: https://www.sciencedirect.com/science/article/pii/S2213219821007996
COVID-19 vaccine-induced rhabdomyolysis: case report with review of the literature: https://www.sciencedirect.com/science/article/pii/S1871402121001880
Clinical and pathologic correlates of skin reactions to COVID-19 vaccine, including V-REPP: a registry-based study: https://www.sciencedirect.com/science/article/pii/S0190962221024427
Thrombosis with thrombocytopenia syndrome associated with COVID-19 vaccines:. https://www.sciencedirect.com/science/article/abs/pii/S0735675721004381.
COVID-19 vaccine-associated anaphylaxis: a statement from the Anaphylaxis Committee of the World Allergy Organization:. https://www.sciencedirect.com/science/article/pii/S1939455121000119.
Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in an elderly, non-comorbid Indian male treated with conventional heparin-warfarin-based anticoagulation:. https://www.sciencedirect.com/science/article/pii/S1871402121002046.
Acute myocarditis after administration of BNT162b2 vaccine against COVID-19:. https://www.sciencedirect.com/science/article/abs/pii/S188558572100133X
Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccine: an analysis of European data:. https://www.sciencedirect.com/science/article/pii/S0896841121000937.immune thrombocytopenia associated with Pfizer-BioNTech’s COVID-19 BNT162b2 mRNA vaccine:. https://www.sciencedirect.com/science/article/pii/S2214250921002018.
Bullous drug eruption after the second dose of COVID-19 mRNA-1273 (Moderna) vaccine: Case report: https://www.sciencedirect.com/science/article/pii/S1876034121001878.
COVID-19 RNA-based vaccines and the risk of prion disease: https://scivisionpub.com/pdfs/covid19rna-based-vaccines-and-the-risk-of-prion-dis ease-1503.pdfThis study notes that 115 pregnant women lost their babies, out of 827 who participated in a study on the safety of covid-19 vaccines: https://www.nejm.org/doi/full/10.1056/NEJMoa2104983.
Process-related impurities in the ChAdOx1 nCov-19 vaccine: https://www.researchsquare.com/article/rs-477964/v1
COVID-19 mRNA vaccine causing CNS inflammation: a case series: https://link.springer.com/article/10.1007/s00415-021-10780-7
Allergic reactions, including anaphylaxis, after receiving the first dose of the Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33475702/
Allergic reactions to the first COVID-19 vaccine: a potential role of polyethylene glycol: https://pubmed.ncbi.nlm.nih.gov/33320974/
Pfizer Vaccine Raises Allergy Concerns: https://pubmed.ncbi.nlm.nih.gov/33384356/
Allergic reactions, including anaphylaxis, after receiving the first dose of Pfizer-BioNTech COVID-19 vaccine – United States, December 14-23, 2020: https://pubmed.ncbi.nlm.nih.gov/33444297/
Allergic reactions, including anaphylaxis, after receiving first dose of Modern COVID-19 vaccine – United States, December 21, 2020-January 10, 2021: https://pubmed.ncbi.nlm.nih.gov/33507892/
Reports of anaphylaxis after coronavirus disease vaccination 2019, South Korea, February 26-April 30, 2021: https://pubmed.ncbi.nlm.nih.gov/34414880/
Reports of anaphylaxis after receiving COVID-19 mRNA vaccines in the U.S.-Dec 14, 2020-Jan 18, 2021: https://pubmed.ncbi.nlm.nih.gov/33576785/
Immunization practices and risk of anaphylaxis: a current, comprehensive update of COVID-19 vaccination data: https://pubmed.ncbi.nlm.nih.gov/34269740/
Relationship between pre-existing allergies and anaphylactic reactions following administration of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34215453/
Anaphylaxis Associated with COVID-19 mRNA Vaccines: Approach to Allergy Research: https://pubmed.ncbi.nlm.nih.gov/33932618/
Severe Allergic Reactions after COVID-19 Vaccination with the Pfizer / BioNTech Vaccine in Great Britain and the USA: Position Statement of the German Allergy Societies: German Medical Association of Allergologists (AeDA), German Society for Allergology and Clinical Immunology (DGAKI) and Society for Pediatric Allergology and Environmental Medicine (GPA): https://pubmed.ncbi.nlm.nih.gov/33643776/
Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/33571463/
Reported orofacial adverse effects from COVID-19 vaccines: the known and the unknown: https://pubmed.ncbi.nlm.nih.gov/33527524/
Cutaneous adverse effects of available COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34518015/
Cumulative adverse event report of anaphylaxis following injections of COVID-19 mRNA vaccine (Pfizer-BioNTech) in Japan: the first month report: https://pubmed.ncbi.nlm.nih.gov/34347278/
COVID-19 vaccines increase the risk of anaphylaxis: https://pubmed.ncbi.nlm.nih.gov/33685103/
Biphasic anaphylaxis after exposure to the first dose of the Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
Allergenic components of the mRNA-1273 vaccine for COVID-19: possible involvement of polyethylene glycol and IgG-mediated complement activation: https://pubmed.ncbi.nlm.nih.gov/33657648/
Polyethylene glycol (PEG) is a cause of anaphylaxis to Pfizer / BioNTech mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33825239/
Acute allergic reactions to COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/33683290/
Polyethylene glycole allergy of the SARS CoV2 vaccine recipient: case report of a young adult recipient and management of future exposure to SARS-CoV2: https://pubmed.ncbi.nlm.nih.gov/33919151/
Elevated rates of anaphylaxis after vaccination with Pfizer BNT162b2 mRNA vaccine against COVID-19 in Japanese healthcare workers; a secondary analysis of initial post-approval safety data: https://pubmed.ncbi.nlm.nih.gov/34128049/
Allergic reactions and adverse events associated with administration of mRNA-based vaccines. A health system experience: https://pubmed.ncbi.nlm.nih.gov/34474708/
Allergic reactions to COVID-19 vaccines: statement of the Belgian Society of Allergy and Clinical Immunology (BelSACI): https://www.tandfonline.com/doi/abs/10.1080/17843286.2021.1909447.
IgE-mediated allergy to polyethylene glycol (PEG) as a cause of anaphylaxis to COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34318537/
Allergic reactions after COVID-19 vaccination: putting the risk in perspective: https://pubmed.ncbi.nlm.nih.gov/34463751/
Anaphylactic reactions to COVID-19 mRNA vaccines: a call for further studies: https://pubmed.ncbi.nlm.nih.gov/33846043/ 188.
Risk of severe allergic reactions to COVID-19 vaccines among patients with allergic skin disease: practical recommendations. An ETFAD position statement with external experts: https://pubmed.ncbi.nlm.nih.gov/33752263/
COVID-19 vaccine and death: causality algorithm according to the WHO eligibility diagnosis: https://pubmed.ncbi.nlm.nih.gov/34073536/
Fatal brain hemorrhage after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928772/
A case series of skin reactions to COVID-19 vaccine in the Department of Dermatology at Loma Linda University: https://pubmed.ncbi.nlm.nih.gov/34423106/
Skin reactions reported after Moderna and Pfizer’s COVID-19 vaccination: a study based on a registry of 414 cases: https://pubmed.ncbi.nlm.nih.gov/33838206/
Clinical and pathologic correlates of skin reactions to COVID-19 vaccine, including V-REPP: a registry-based study: https://pubmed.ncbi.nlm.nih.gov/34517079/
Skin reactions after vaccination against SARS-COV-2: a nationwide Spanish cross-sectional study of 405 cases: https://pubmed.ncbi.nlm.nih.gov/34254291/
Varicella zoster virus and herpes simplex virus reactivation after vaccination with COVID-19: review of 40 cases in an international dermatologic registry: https://pubmed.ncbi.nlm.nih.gov/34487581/
Immune thrombosis and thrombocytopenia (VITT) associated with the COVID-19 vaccine: diagnostic and therapeutic recommendations for a new syndrome: https://pubmed.ncbi.nlm.nih.gov/33987882/
Laboratory testing for suspicion of COVID-19 vaccine-induced thrombotic (immune) thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34138513/
Intracerebral hemorrhage due to thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: the first fatal case in Korea: https://pubmed.ncbi.nlm.nih.gov/34402235/
Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and positive SARS-CoV-2 tests: self-controlled case series study: https://pubmed.ncbi.nlm.nih.gov/34446426/
Vaccine-induced immune thrombotic thrombocytopenia and cerebral venous sinus thrombosis after covid-19 vaccination; a systematic review: https://pubmed.ncbi.nlm.nih.gov/34365148/.
Nerve and muscle adverse events after vaccination with COVID-19: a systematic review and meta-analysis of clinical trials: https://pubmed.ncbi.nlm.nih.gov/34452064/.
A rare case of cerebral venous thrombosis and disseminated intravascular coagulation temporally associated with administration of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33917902/
Primary adrenal insufficiency associated with thrombotic immune thrombocytopenia induced by Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (VITT): https://pubmed.ncbi.nlm.nih.gov/34256983/
Acute cerebral venous thrombosis and pulmonary artery embolism associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34247246/.
Thromboaspiration infusion and fibrinolysis for portomesenteric thrombosis after administration of AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34132839/
59-year-old woman with extensive deep venous thrombosis and pulmonary thromboembolism 7 days after a first dose of Pfizer-BioNTech BNT162b2 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34117206/
Cerebral venous thrombosis and vaccine-induced thrombocytopenia.a. Oxford-AstraZeneca COVID-19: a missed opportunity for a rapid return on experience: https://pubmed.ncbi.nlm.nih.gov/34033927/
Myocarditis and other cardiovascular complications of mRNA-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34277198/
Pericarditis after administration of COVID-19 mRNA BNT162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34364831/
Unusual presentation of acute pericarditis after vaccination against SARS-COV-2 mRNA-1237 Modern: https://pubmed.ncbi.nlm.nih.gov/34447639/
Case report: acute myocarditis after second dose of SARS-CoV-2 mRNA-1273 vaccine mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34514306/
Immune-mediated disease outbreaks or recent-onset disease in 27 subjects after mRNA/DNA vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/33946748/
Insights from a murine model of myopericarditis induced by COVID-19 mRNA vaccine: could accidental intravenous injection of a vaccine induce myopericarditis: https://pubmed.ncbi.nlm.nih.gov/34453510/
Immune thrombocytopenia in a 22-year-old post Covid-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33476455/
Propylthiouracil-induced neutrophil anti-cytoplasmic antibody-associated vasculitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34451967/
Secondary immune thrombocytopenia (ITP) associated with ChAdOx1 Covid-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34377889/
Thrombosis with thrombocytopenia syndrome (TTS) following AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19 vaccination: risk-benefit analysis for persons <60 years in Australia: https://pubmed.ncbi.nlm.nih.gov/34272095/
COVID-19 vaccination association and facial nerve palsy: A case-control study: https://pubmed.ncbi.nlm.nih.gov/34165512/
The association between COVID-19 vaccination and Bell’s palsy: https://pubmed.ncbi.nlm.nih.gov/34411533/
Bell’s palsy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33611630/
Acute transverse myelitis (ATM): clinical review of 43 patients with COVID-19-associated ATM and 3 serious adverse events of post-vaccination ATM with ChAdOx1 nCoV-19 vaccine (AZD1222): https://pubmed.ncbi.nlm.nih.gov/33981305/
Bell’s palsy after 24 hours of mRNA-1273 SARS-CoV-2 mRNA-1273 vaccine: https://pubmed.ncbi.nlm.nih.gov/34336436/
Sequential contralateral facial nerve palsy after first and second doses of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34281950/.
Transverse myelitis induced by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34458035/
Peripheral facial nerve palsy after vaccination with BNT162b2 (COVID-19): https://pubmed.ncbi.nlm.nih.gov/33734623/
Acute abducens nerve palsy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34044114/.
Facial nerve palsy after administration of COVID-19 mRNA vaccines: analysis of self-report database: https://pubmed.ncbi.nlm.nih.gov/34492394/
Transient oculomotor paralysis after administration of RNA-1273 messenger vaccine for SARS-CoV-2 diplopia after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34369471/
Bell’s palsy after Ad26.COV2.S COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34014316/
Bell’s palsy after COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34330676/
A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy following ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34272622/
Guillian Barré syndrome after vaccination with mRNA-1273 against COVID-19: https://pubmed.ncbi.nlm.nih.gov/34477091/
Acute facial paralysis as a possible complication of SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33975372/.Bell’s palsy after COVID-19 vaccination with high antibody response in CSF: https://pubmed.ncbi.nlm.nih.gov/34322761/.
Parsonage-Turner syndrome associated with SARS-CoV-2 or SARS-CoV-2 vaccination. Comment on: “Neuralgic amyotrophy and COVID-19 infection: 2 cases of accessory spinal nerve palsy” by Coll et al. Articular Spine 2021; 88: 10519: https://pubmed.ncbi.nlm.nih.gov/34139321/.
Bell’s palsy after a single dose of vaccine mRNA. SARS-CoV-2: case report: https://pubmed.ncbi.nlm.nih.gov/34032902/.
Autoimmune hepatitis developing after coronavirus disease vaccine 2019 (COVID-19): causality or victim?: https://pubmed.ncbi.nlm.nih.gov/33862041/
Autoimmune hepatitis triggered by vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34332438/
Acute autoimmune-like hepatitis with atypical antimitochondrial antibody after vaccination with COVID-19 mRNA: a new clinical entity: https://pubmed.ncbi.nlm.nih.gov/34293683/.
Autoimmune hepatitis after COVID vaccine: https://pubmed.ncbi.nlm.nih.gov/34225251/A novel case of bifacial diplegia variant of Guillain-Barré syndrome after vaccination with Janssen COVID-19: https://pubmed.ncbi.nlm.nih.gov/34449715/
Comparison of vaccine-induced thrombotic events between ChAdOx1 nCoV-19 and Ad26.COV.2.S vaccines: https://pubmed.ncbi.nlm.nih.gov/34139631/.
Bilateral superior ophthalmic vein thrombosis, ischemic stroke and immune thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/33864750/
Diagnosis and treatment of cerebral venous sinus thrombosis with vaccine-induced immune-immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/33914590/
Venous sinus thrombosis after vaccination with ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34420802/
Cerebral venous sinus thrombosis following vaccination against SARS-CoV-2: an analysis of cases reported to the European Medicines Agency: https://pubmed.ncbi.nlm.nih.gov/34293217/
Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and positive SARS-CoV-2 tests: self-controlled case series study: https://pubmed.ncbi.nlm.nih.gov/34446426/
Blood clots and bleeding after BNT162b2 and ChAdOx1 nCoV-19 vaccination: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34174723/
Arterial events, venous thromboembolism, thrombocytopenia and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/33952445/
First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic and hemorrhagic events in Scotland: https://pubmed.ncbi.nlm.nih.gov/34108714/
Cerebral venous thrombosis associated with COVID-19 vaccine in Germany: https://pubmed.ncbi.nlm.nih.gov/34288044/
Malignant cerebral infarction after vaccination with ChAdOx1 nCov-19: a catastrophic variant of vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34341358/
Celiac artery and splenic artery thrombosis complicated by splenic infarction 7 days after the first dose of Oxford vaccine, causal relationship or coincidence: https://pubmed.ncbi.nlm.nih.gov/34261633/.
Primary adrenal insufficiency associated with Oxford-AstraZeneca ChAdOx1 nCoV-19 (VITT) vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34256983/
Thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332437/.Cerebral venous sinus thrombosis associated with thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33845870/.
Thrombosis with thrombocytopenia syndrome after COVID-19 immunization: https://pubmed.ncbi.nlm.nih.gov/34236343/
Acute myocardial infarction within 24 hours after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34364657/.
Bilateral acute macular neuroretinopathy after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34287612/
Central venous sinus thrombosis with subarachnoid hemorrhage after COVID-19 mRNA vaccination: are these reports merely coincidental: https://pubmed.ncbi.nlm.nih.gov/34478433/
Intracerebral hemorrhage due to thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: the first fatal case in Korea: https://pubmed.ncbi.nlm.nih.gov/34402235/
Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin-based anticoagulation: https://pubmed.ncbi.nlm.nih.gov/34186376/
Cerebral venous sinus thrombosis 2 weeks after first dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34101024/
A case of multiple thrombocytopenia and thrombosis following vaccination with ChAdOx1 nCoV-19 against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34137813/
Vaccine-induced thrombotic thrombocytopenia: the elusive link between thrombosis and adenovirus-based SARS-CoV-2 vaccines: https://pubmed.ncbi.nlm.nih.gov/34191218/
Acute ischemic stroke revealing immune thrombotic thrombocytopenia induced by ChAdOx1 nCov-19 vaccine: impact on recanalization strategy: https://pubmed.ncbi.nlm.nih.gov/34175640/
New-onset refractory status epilepticus after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34153802/
Thrombosis with thrombocytopenia syndrome associated with COVID-19 viral vector vaccines: https://pubmed.ncbi.nlm.nih.gov/34092488/
Pulmonary embolism, transient ischemic attack, and thrombocytopenia after Johnson & Johnson COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261635/
Thromboaspiration infusion and fibrinolysis for portomesenteric thrombosis after administration of the AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34132839/.
Spontaneous HIT syndrome: knee replacement, infection, and parallels with vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34144250/
Deep venous thrombosis (DVT) occurring shortly after second dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/33687691/
Procoagulant antibody-mediated procoagulant platelets in immune thrombotic thrombocytopenia associated with SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34011137/.
Vaccine-induced immune thrombotic thrombocytopenia causing a severe form of cerebral venous thrombosis with high mortality rate: a case series: https://pubmed.ncbi.nlm.nih.gov/34393988/.
Procoagulant microparticles: a possible link between vaccine-induced immune thrombocytopenia (VITT) and cerebral sinus venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34129181/.
Atypical thrombosis associated with the vaccine VaxZevria® (AstraZeneca): data from the French network of regional pharmacovigilance centers: https://pubmed.ncbi.nlm.nih.gov/34083026/.
Acute cerebral venous thrombosis and pulmonary artery embolism associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34247246/.
Vaccine-induced thrombosis and thrombocytopenia with bilateral adrenal haemorrhage: https://pubmed.ncbi.nlm.nih.gov/34235757/.
Palmar digital vein thrombosis after Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34473841/.
Cutaneous thrombosis associated with cutaneous necrosis following Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34189756/
Cerebral venous thrombosis following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34045111/.
Lipschütz ulcers after AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34366434/.
Amyotrophic Neuralgia secondary to Vaxzevri vaccine (AstraZeneca) COVID-19: https://pubmed.ncbi.nlm.nih.gov/34330677/
Thrombosis with thrombocytopenia after Messenger vaccine RNA-1273: https://pubmed.ncbi.nlm.nih.gov/34181446/
Intracerebral hemorrhage twelve days after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34477089/
Thrombotic thrombocytopenia after vaccination with COVID-19: in search of the underlying mechanism: https://pubmed.ncbi.nlm.nih.gov/34071883/
Coronavirus (COVID-19) Vaccine-induced immune thrombotic thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34033367/
Comparison of adverse drug reactions among four COVID-19 vaccines in Europe using the EudraVigilance database: Thrombosis in unusual sites: https://pubmed.ncbi.nlm.nih.gov/34375510/
Immunoglobulin adjuvant for vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34107198/
Severe vaccine-induced thrombotic thrombocytopenia following vaccination with COVID-19: an autopsy case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34355379/.
A case of acute pulmonary embolism after immunization with SARS-CoV-2 mRNA: https://pubmed.ncbi.nlm.nih.gov/34452028/
Neurosurgical considerations regarding decompressive craniectomy for intracerebral hemorrhage after SARS-CoV-2 vaccination in vaccine-induced thrombotic thrombocytopenia-VITT: https://pubmed.ncbi.nlm.nih.gov/34202817/
Thrombosis and SARS-CoV-2 vaccines: vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34237213/.
Acquired thrombotic thrombocytopenic thrombocytopenic purpura: a rare disease associated with the BNT162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34105247/.
Immune complexes, innate immunity and NETosis in ChAdOx1 vaccine-induced thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34405870/.
Sensory Guillain-Barré syndrome following ChAdOx1 nCov-19 vaccine: report of two cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34416410/.
Vogt-Koyanagi-Harada syndrome after COVID-19 and ChAdOx1 nCoV-19 (AZD1222) vaccination: https://pubmed.ncbi.nlm.nih.gov/34462013/.
Reactivation of Vogt-Koyanagi-Harada disease under control for more than 6 years, after anti-SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34224024/.
Post-vaccinal encephalitis after ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34324214/
Neurological symptoms and neuroimaging alterations related to COVID-19 vaccine: cause or coincidence?: https://pubmed.ncbi.nlm.nih.gov/34507266/
Fatal systemic capillary leak syndrome after SARS-COV-2 vaccination in a patient with multiple myeloma: https://pubmed.ncbi.nlm.nih.gov/34459725/
Polyarthralgia and myalgia syndrome after vaccination with ChAdOx1 nCOV-19: https://pubmed.ncbi.nlm.nih.gov/34463066/
Three cases of subacute thyroiditis after SARS-CoV-2 vaccination: post-vaccination ASIA syndrome: https://pubmed.ncbi.nlm.nih.gov/34043800/.
Facial diplegia: a rare and atypical variant of Guillain-Barré syndrome and the Ad26.COV2.S vaccine: https://pubmed.ncbi.nlm.nih.gov/34447646/
Association between ChAdOx1 nCoV-19 vaccination and bleeding episodes: large population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/34479760/.
Fulminant myocarditis and systemic hyperinflammation temporally associated with BNT162b2 COVID-19 mRNA vaccination in two patients: https://pubmed.ncbi.nlm.nih.gov/34416319/.
Adverse effects reported after COVID-19 vaccination in a tertiary care hospital, centered on cerebral venous sinus thrombosis (CVST): https://pubmed.ncbi.nlm.nih.gov/34092166/
Induction and exacerbation of subacute cutaneous lupus erythematosus erythematosus after mRNA- or adenoviral vector-based SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34291477/
Petechiae and peeling of fingers after immunization with BTN162b2 messenger RNA (mRNA)-based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34513435/
Hepatitis C virus reactivation after COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34512037/
Bilateral immune-mediated keratolysis after immunization with SARS-CoV-2 recombinant viral vector vaccine: https://pubmed.ncbi.nlm.nih.gov/34483273/.
Immune-mediated thrombocytopenic purpura after Pfizer-BioNTech COVID-19 vaccine in an elderly woman: https://pubmed.ncbi.nlm.nih.gov/34513446/
Platelet activation and modulation in thrombosis with thrombocytopenia syndrome associated with the ChAdO × 1 nCov-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34474550/
Reactive arthritis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34033732/.
Two cases of Graves’ disease after SARS-CoV-2 vaccination: an autoimmune / inflammatory syndrome induced by adjuvants: https://pubmed.ncbi.nlm.nih.gov/33858208/
Acute relapse and impaired immunization after COVID-19 vaccination in a patient with multiple sclerosis treated with rituximab: https://pubmed.ncbi.nlm.nih.gov/34015240/
Widespread fixed bullous drug eruption after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34482558/
COVID-19 mRNA vaccine causing CNS inflammation: a case series: https://pubmed.ncbi.nlm.nih.gov/34480607/
Thymic hyperplasia after Covid-19 mRNA-based vaccination with Covid-19: https://pubmed.ncbi.nlm.nih.gov/34462647/
Acute disseminated encephalomyelitis following vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34325334/
Tolosa-Hunt syndrome occurring after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34513398/
Systemic capillary extravasation syndrome following vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
Immune-mediated thrombocytopenia associated with Ad26.COV2.S vaccine (Janssen; Johnson & Johnson): https://pubmed.ncbi.nlm.nih.gov/34469919/.
Transient thrombocytopenia with glycoprotein-specific platelet autoantibodies after vaccination with Ad26.COV2.S: case report: https://pubmed.ncbi.nlm.nih.gov/34516272/.
Acute hyperactive encephalopathy following COVID-19 vaccination with dramatic response to methylprednisolone: case report: https://pubmed.ncbi.nlm.nih.gov/34512961/
Transient cardiac injury in adolescents receiving the BNT162b2 mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34077949/
Autoimmune hepatitis developing after ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34171435/
Severe relapse of multiple sclerosis after COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34447349/
Lymphohistocytic myocarditis after vaccination with the COVID-19 viral vector Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34514078/
Hemophagocytic lymphohistiocytosis after vaccination with ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34406660/.
IgA vasculitis in adult patient after vaccination with ChadOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34509658/
A case of leukocytoclastic vasculitis after vaccination with a SARS-CoV2 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34196469/.
Onset / outbreak of psoriasis after Corona virus ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca / Covishield): report of two cases: https://pubmed.ncbi.nlm.nih.gov/34350668/
Hailey-Hailey disease exacerbation after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34436620/
Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/.
COVID-19 vaccine, immune thrombotic thrombocytopenia, jaundice, hyperviscosity: concern in cases with underlying hepatic problems: https://pubmed.ncbi.nlm.nih.gov/34509271/.
Report of the International Cerebral Venous Thrombosis Consortium on cerebral venous thrombosis after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34462996/
Immune thrombocytopenia after vaccination during the COVID-19 pandemic: https://pubmed.ncbi.nlm.nih.gov/34435486/
COVID-19: lessons from the Norwegian tragedy should be taken into account in planning for vaccine launch in less developed/developing countries: https://pubmed.ncbi.nlm.nih.gov/34435142/
Rituximab-induced acute lympholysis and pancytopenia following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34429981/
Exacerbation of plaque psoriasis after COVID-19 inactivated mRNA and BNT162b2 vaccines: report of two cases: https://pubmed.ncbi.nlm.nih.gov/34427024/
Vaccine-induced interstitial lung disease: a rare reaction to COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34510014/.
Vesiculobullous cutaneous reactions induced by COVID-19 mRNA vaccine: report of four cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34236711/
Vaccine-induced thrombocytopenia with severe headache: https://pubmed.ncbi.nlm.nih.gov/34525282/
Acute perimyocarditis after the first dose of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34515024/
Rhabdomyolysis and fasciitis induced by COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34435250/.
Rare cutaneous adverse effects of COVID-19 vaccines: a case series and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34363637/
Immune thrombocytopenia associated with the Pfizer-BioNTech COVID-19 mRNA vaccine BNT162b2: https://www.sciencedirect.com/science/article/pii/S2214250921002018
Secondary immune thrombocytopenia putatively attributable to COVID-19 vaccination: https://casereports.bmj.com/content/14/5/e242220.abstract.
Immune thrombocytopenia following Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34155844/
Newly diagnosed idiopathic thrombocytopenia after COVID-19 vaccine administration: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8176657/.
Idiopathic thrombocytopenic purpura and the Modern Covid-19 vaccine: https://www.annemergmed.com/article/S0196-0644(21)00122-0/fulltext.
Thrombocytopenia after Pfizer and Moderna SARS vaccination – CoV -2: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8014568/.
Immune thrombocytopenic purpura and acute liver injury after COVID-19 vaccination: https://casereports.bmj.com/content/14/7/e242678.
Collection of complement-mediated and autoimmune-mediated hematologic conditions after SARS-CoV-2 vaccination: https://ashpublications.org/bloodadvances/article/5/13/2794/476324/Autoimmune-and-complement-mediated-hematologic
Petechial rash associated with CoronaVac vaccination: first report of cutaneous side effects before phase 3 results: https://ejhp.bmj.com/content/early/2021/05/23/ejhpharm-2021-002794
COVID-19 vaccines induce severe hemolysis in paroxysmal nocturnal hemoglobinuria: https://ashpublications.org/blood/article/137/26/3670/475905/COVID-19-vaccines-induce-severe-hemolysis-in
Cerebral venous thrombosis associated with COVID-19 vaccine in Germany: https://pubmed.ncbi.nlm.nih.gov/34288044/.
Cerebral venous sinus thrombosis after COVID-19 vaccination : Neurological and radiological management: https://pubmed.ncbi.nlm.nih.gov/34327553/.
Cerebral venous thrombosis and thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33878469/.
Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination: report of two cases in the United Kingdom: https://pubmed.ncbi.nlm.nih.gov/33857630/.
Cerebral venous thrombosis induced by SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34090750/.
Carotid artery immune thrombosis induced by adenovirus-vectored COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34312301/.
Cerebral venous sinus thrombosis associated with vaccine-induced thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34333995/
The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune-immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34455073/
Cerebral venous thrombosis after the BNT162b2 mRNA SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34111775/.
Cerebral venous thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34045111/
Lethal cerebral venous sinus thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33983464/
Cerebral venous sinus thrombosis in the U.S. population, After SARS-CoV-2 vaccination with adenovirus and after COVID-19: https://pubmed.ncbi.nlm.nih.gov/34116145/
Cerebral venous thrombosis after COVID-19 vaccination: is the risk of thrombosis increased by intravascular administration of the vaccine: https://pubmed.ncbi.nlm.nih.gov/34286453/.
Central venous sinus thrombosis with subarachnoid hemorrhage after COVID-19 mRNA vaccination: are these reports merely coincidental: https://pubmed.ncbi.nlm.nih.gov/34478433/
Cerebral venous sinus thrombosis after ChAdOx1 nCov-19 vaccination with a misleading first brain MRI: https://pubmed.ncbi.nlm.nih.gov/34244448/
Early results of bivalirudin treatment for thrombotic thrombocytopenia and cerebral venous sinus thrombosis after vaccination with Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34226070/
Cerebral venous sinus thrombosis associated with post-vaccination thrombocytopenia by COVID-19: https://pubmed.ncbi.nlm.nih.gov/33845870/.
Cerebral venous sinus thrombosis 2 weeks after the first dose of SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34101024/.
Vaccine-induced immune thrombotic thrombocytopenia causing a severe form of cerebral venous thrombosis with a high mortality rate: a case series: https://pubmed.ncbi.nlm.nih.gov/34393988/.
Adenovirus interactions with platelets and coagulation and vaccine-associated autoimmune thrombocytopenia thrombosis syndrome: https://pubmed.ncbi.nlm.nih.gov/34407607/.
Headache attributed to COVID-19 (SARS-CoV-2 coronavirus) vaccination with the ChAdOx1 nCoV-19 (AZD1222) vaccine: a multicenter observational cohort study: https://pubmed.ncbi.nlm.nih.gov/34313952/
Adverse effects reported after COVID-19 vaccination in a tertiary care hospital, focus on cerebral venous sinus thrombosis (CVST): https://pubmed.ncbi.nlm.nih.gov/34092166/
Cerebral venous sinus thrombosis following vaccination against SARS-CoV-2: an analysis of cases reported to the European Medicines Agency: https://pubmed.ncbi.nlm.nih.gov/34293217/
A rare case of a middle-age Asian male with cerebral venous thrombosis after COVID-19 AstraZeneca vaccination: https://pubmed.ncbi.nlm.nih.gov/34274191/
Cerebral venous sinus thrombosis negative for anti-PF4 antibody without thrombocytopenia after immunization with COVID-19 vaccine in a non-comorbid elderly Indian male treated with conventional heparin-warfarin-based anticoagulation: https://pubmed.ncbi.nlm.nih.gov/34186376/
Arterial events, venous thromboembolism, thrombocytopenia and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/33952445/
Procoagulant microparticles: a possible link between vaccine-induced immune thrombocytopenia (VITT) and cerebral sinus venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34129181/
S. case reports of cerebral venous sinus thrombosis with thrombocytopenia after vaccination with Ad26.COV2.S, March 2-April 21, 2021: https://pubmed.ncbi.nlm.nih.gov/33929487/.
Malignant cerebral infarction after vaccination with ChAdOx1 nCov-19: a catastrophic variant of vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34341358/
Acute ischemic stroke revealing immune thrombotic thrombocytopenia induced by ChAdOx1 nCov-19 vaccine: impact on recanalization strategy: https://pubmed.ncbi.nlm.nih.gov/34175640/
Vaccine-induced immune thrombotic immune thrombocytopenia (VITT): a new clinicopathologic entity with heterogeneous clinical presentations: https://pubmed.ncbi.nlm.nih.gov/34159588/.
Imaging and hematologic findings in thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19 (AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34402666/
Autoimmunity roots of thrombotic events after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34508917/
Cerebral venous sinus thrombosis after vaccination: the UK experience: https://pubmed.ncbi.nlm.nih.gov/34370974/
Massive cerebral venous thrombosis and venous basin infarction as late complications of COVID-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34373991/
Australian and New Zealand approach to the diagnosis and treatment of vaccine-induced immune thrombosis and immune thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34490632/
An observational study to identify the prevalence of thrombocytopenia and anti-PF4 / polyanion antibodies in Norwegian health care workers after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33909350/
Acute transverse myelitis (ATM): clinical review of 43 patients with COVID-19-associated ATM and 3 serious adverse events of post-vaccination ATM with ChAdOx1 nCoV-19 (AZD1222) vaccine: https://pubmed.ncbi.nlm.nih.gov/33981305/
.A case of acute demyelinating polyradiculoneuropathy with bilateral facial palsy after ChAdOx1 nCoV-19 vaccine:. https://pubmed.ncbi.nlm.nih.gov/34272622/
Thrombocytopenia with acute ischemic stroke and hemorrhage in a patient recently vaccinated with an adenoviral vector-based COVID-19 vaccine:. https://pubmed.ncbi.nlm.nih.gov/33877737/
Predicted and observed incidence of thromboembolic events among Koreans vaccinated with the ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34254476/
First dose of ChAdOx1 and BNT162b2 COVID-19 vaccines and thrombocytopenic, thromboembolic, and hemorrhagic events in Scotland: https://pubmed.ncbi.nlm.nih.gov/34108714/
ChAdOx1 nCoV-19 vaccine-associated thrombocytopenia: three cases of immune thrombocytopenia after 107,720 doses of ChAdOx1 vaccination in Thailand: https://pubmed.ncbi.nlm.nih.gov/34483267/.
Pulmonary embolism, transient ischemic attack, and thrombocytopenia after Johnson & Johnson COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261635/
Neurosurgical considerations with respect to decompressive craniectomy for intracerebral hemorrhage after SARS-CoV-2 vaccination in vaccine-induced thrombotic thrombocytopenia-VITT: https://pubmed.ncbi.nlm.nih.gov/34202817/
Drug-Induced Liver Injury After COVID-19 Vaccine https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372667/
Large hemorrhagic stroke after vaccination against ChAdOx1 nCoV-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34273119/
Polyarthralgia and myalgia syndrome after vaccination with ChAdOx1 nCOV-19: https://pubmed.ncbi.nlm.nih.gov/34463066/
A rare case of thrombosis and thrombocytopenia of the superior ophthalmic vein after ChAdOx1 nCoV-19 vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34276917/
Thrombosis and severe acute respiratory syndrome Coronavirus 2 vaccines: vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34237213/.
Renal vein thrombosis and pulmonary embolism secondary to vaccine-induced thrombotic immune thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34268278/.
Limb ischemia and pulmonary artery thrombosis after ChAdOx1 nCoV-19 vaccine (Oxford-AstraZeneca): a case of vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/33990339/.
Association between ChAdOx1 nCoV-19 vaccination and bleeding episodes: large population-based cohort study: https://pubmed.ncbi.nlm.nih.gov/34479760/.
Secondary thrombocytopenia after SARS-CoV-2 vaccination: case report of haemorrhage and hematoma after minor oral surgery: https://pubmed.ncbi.nlm.nih.gov/34314875/.
Venous thromboembolism and mild thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34384129/
Fatal exacerbation of ChadOx1-nCoV-19-induced thrombotic thrombocytopenia syndrome after successful initial therapy with intravenous immunoglobulins: a rationale for monitoring immunoglobulin G levels: https://pubmed.ncbi.nlm.nih.gov/34382387/
A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: victim or causality?: https://pubmed.ncbi.nlm.nih.gov/34416184/.
Intracerebral hemorrhage associated with vaccine-induced thrombotic thrombocytopenia after ChAdOx1 nCOVID-19 vaccination in a pregnant woman: https://pubmed.ncbi.nlm.nih.gov/34261297/
Massive cerebral venous thrombosis due to vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34261296/Nephrotic syndrome after ChAdOx1 nCoV-19 vaccine against SARScoV-2: https://pubmed.ncbi.nlm.nih.gov/34250318/.
A case of vaccine-induced immune-immune thrombotic thrombocytopenia with massive arteriovenous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34059191/
Cutaneous thrombosis associated with cutaneous necrosis following Oxford-AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34189756/
Thrombocytopenia in an adolescent with sickle cell anemia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34331506/
Vaccine-induced thrombocytopenia with severe headache: https://pubmed.ncbi.nlm.nih.gov/34525282/Myocarditis associated with SARS-CoV-2 mRNA vaccination in children aged 12 to 17 years: stratified analysis of a national database: https://www.medrxiv.org/content/10.1101/2021.08.30.21262866v1COVID-19 mRNA vaccination and development of CMR-confirmed myopericarditis: https://www.medrxiv.org/content/10.1101/2021.09.13.21262182v1.full?s=09.Severe autoimmune hemolytic anemia after receipt of SARS-CoV-2 mRNA vaccine: https://onlinelibrary.wiley.com/doi/10.1111/trf.16672Intravenous injection of coronavirus disease 2019 (COVID-19) mRNA vaccine can induce acute myopericarditis in a mouse model: https://t.co/j0IEM8cMXI
A report of myocarditis adverse events in the U.S. Vaccine Adverse Event Reporting System. (VAERS) in association with COVID-19 injectable biologics: https://pubmed.ncbi.nlm.nih.gov/34601006/
This study concludes that: “The vaccine was associated with an excess risk of myocarditis (1 to 5 events per 100,000 persons). The risk of this potentially serious adverse event and of many other serious adverse events increased substantially after SARS-CoV-2 infection”: https://www.nejm.org/doi/full/10.1056/NEJMoa2110475
Bilateral uveitis after inoculation with COVID-19 vaccine: a case report: https://www.sciencedirect.com/science/article/pii/S1201971221007797
Myocarditis associated with SARS-CoV-2 mRNA vaccination in children aged 12 to 17 years: stratified analysis of a national database: https://www.medrxiv.org/content/10.1101/2021.08.30.21262866v1.
Immune-mediated hepatitis with the Moderna vaccine is no longer a coincidence but confirmed: https://www.sciencedirect.com/science/article/pii/S0168827821020936
Extensive investigations revealed consistent pathophysiologic alterations after vaccination with COVID-19 vaccines: https://www.nature.com/articles/s41421-021-00329-3
Lobar hemorrhage with ventricular rupture shortly after the first dose of an mRNA-based SARS-CoV-2 vaccine: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8553377/
Mrna COVID vaccines dramatically increase endothelial inflammatory markers and risk of Acute Coronary Syndrome as measured by PULS cardiac testing: a caution: https://www.ahajournals.org/doi/10.1161/circ.144.suppl_1.10712
ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome:https://www.science.org/doi/10.1126/sciadv.abl8213Lethal vaccine-induced immune thrombotic immune thrombocytopenia (VITT) following announcement 26.COV2.S: first documented case outside the U.S.: https://pubmed.ncbi.nlm.nih.gov/34626338/
A prothrombotic thrombocytopenic disorder resembling heparin-induced thrombocytopenia after coronavirus-19 vaccination: https://europepmc.org/article/PPR/PPR304469 435.
VITT (vaccine-induced immune thrombotic thrombocytopenia) after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34731555/
Vaccine-induced immune thrombotic thrombocytopenia (VITT): a new clinicopathologic entity with heterogeneous clinical presentations: https://pubmed.ncbi.nlm.nih.gov/34159588/
Treatment of acute ischemic stroke associated with ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34461442/
Spectrum of neurological complications after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34719776/.Cerebral venous sinus thrombosis after vaccination: the UK experience: https://pubmed.ncbi.nlm.nih.gov/34370974/
Cerebral venous vein/venous sinus thrombosis with thrombocytopenia syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34373413/
Portal vein thrombosis due to vaccine-induced immune thrombotic immune thrombocytopenia (VITT) after Covid vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34598301/
Hematuria, a generalized petechial rash and headaches after Oxford AstraZeneca ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34620638/
Myocardial infarction and azygos vein thrombosis after vaccination with ChAdOx1 nCoV-19 in a hemodialysis patient: https://pubmed.ncbi.nlm.nih.gov/34650896/
Takotsubo (stress) cardiomyopathy after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34625447/
Humoral response induced by Prime-Boost vaccination with ChAdOx1 nCoV-19 and BNT162b2 mRNA vaccines in a patient with multiple sclerosis treated with teriflunomide: https://pubmed.ncbi.nlm.nih.gov/34696248/
Guillain-Barré syndrome after ChAdOx1 nCoV-19 COVID-19 vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34548920/
Refractory vaccine-induced immune thrombotic thrombocytopenia (VITT) treated with delayed therapeutic plasma exchange (TPE): https://pubmed.ncbi.nlm.nih.gov/34672380/.
Rare case of COVID-19 vaccine-associated intracranial hemorrhage with venous sinus thrombosis: https://pubmed.ncbi.nlm.nih.gov/34556531/.
Delayed headache after COVID-19 vaccination: a warning sign for vaccine-induced cerebral venous thrombosis: https://pubmed.ncbi.nlm.nih.gov/34535076/.
Clinical features of vaccine-induced thrombocytopenia and immune thrombosis: https://pubmed.ncbi.nlm.nih.gov/34379914/.
Predictors of mortality in thrombotic thrombocytopenia after adenoviral COVID-19 vaccination: the FAPIC score: https://pubmed.ncbi.nlm.nih.gov/34545400/
Ischemic stroke as a presenting feature of immune thrombotic thrombocytopenia induced by ChAdOx1-nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34035134/
In-hospital observational study of neurological disorders in patients recently vaccinated with COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34688190/
Endovascular treatment for vaccine-induced cerebral venous sinus thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19: report of three cases: https://pubmed.ncbi.nlm.nih.gov/34782400/
Cardiovascular, neurological, and pulmonary events after vaccination with BNT162b2, ChAdOx1 nCoV-19, and Ad26.COV2.S vaccines: an analysis of European data: https://pubmed.ncbi.nlm.nih.gov/34710832/
Cerebral venous thrombosis developing after vaccination. COVID-19: VITT, VATT, TTS and more: https://pubmed.ncbi.nlm.nih.gov/34695859/
Cerebral venous thrombosis and myeloproliferative neoplasms: a three-center study of 74 consecutive cases: https://pubmed.ncbi.nlm.nih.gov/34453762/.
Possible triggers of thrombocytopenia and/or hemorrhage by BNT162b2 vaccine, Pfizer-BioNTech: https://pubmed.ncbi.nlm.nih.gov/34660652/.
Multiple sites of arterial thrombosis in a 35-year-old patient after vaccination with ChAdOx1 (AstraZeneca), which required emergency femoral and carotid surgical thrombectomy: https://pubmed.ncbi.nlm.nih.gov/34644642/
Case series of vaccine-induced thrombotic thrombocytopenia in a London teaching hospital: https://pubmed.ncbi.nlm.nih.gov/34694650/
Neuro-ophthalmic complications with thrombocytopenia and thrombosis induced by ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34726934/
Thrombotic events after COVID-19 vaccination in over 50 years of age: results of a population-based study in Italy: https://pubmed.ncbi.nlm.nih.gov/34835237/
Intracerebral hemorrhage associated with vaccine-induced thrombotic thrombocytopenia after ChAdOx1 nCOVID-19 vaccination in a pregnant woman: https://pubmed.ncbi.nlm.nih.gov/34261297/
Age- and sex-specific incidence of cerebral venous sinus thrombosis associated with Ad26.COV2.S COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34724036/.
Genital necrosis with cutaneous thrombosis following vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34839563/
Cerebral venous sinus thrombosis after mRNA-based COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34783932/.
COVID-19 vaccine-induced immune thrombosis with thrombocytopenia thrombosis (VITT) and shades of gray in thrombus formation: https://pubmed.ncbi.nlm.nih.gov/34624910/
Inflammatory myositis after vaccination with ChAdOx1: https://pubmed.ncbi.nlm.nih.gov/34585145/
Acute ST-segment elevation myocardial infarction secondary to vaccine-induced immune thrombosis with thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34580132/.
A rare case of COVID-19 vaccine-induced thrombotic thrombocytopenia (VITT) affecting the venosplanchnic and pulmonary arterial circulation from a UK district general hospital: https://pubmed.ncbi.nlm.nih.gov/34535492/
COVID-19 vaccine-induced thrombotic thrombocytopenia: a case series: https://pubmed.ncbi.nlm.nih.gov/34527501/
Thrombosis with thrombocytopenia syndrome (TTS) after vaccination with AstraZeneca ChAdOx1 nCoV-19 (AZD1222) COVID-19: a risk-benefit analysis for persons <60% risk-benefit analysis for people <60 years in Australia: https://pubmed.ncbi.nlm.nih.gov/34272095/
Immune thrombocytopenia after immunization with Vaxzevria ChadOx1-S vaccine (AstraZeneca), Victoria, Australia: https://pubmed.ncbi.nlm.nih.gov/34756770/
Characteristics and outcomes of patients with cerebral venous sinus thrombosis in thrombotic immune thrombocytopenia induced by SARS-CoV-2 vaccine: https://jamanetwork.com/journals/jamaneurology/fullarticle/2784622
Case study of thrombosis and thrombocytopenia syndrome after administration of the AstraZeneca COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34781321/
Thrombosis with Thrombocytopenia Syndrome Associated with COVID-19 Vaccines: https://pubmed.ncbi.nlm.nih.gov/34062319/Cerebral venous sinus thrombosis following vaccination with ChAdOx1: the first case of definite thrombosis with thrombocytopenia syndrome in India: https://pubmed.ncbi.nlm.nih.gov/34706921/
COVID-19 vaccine-associated thrombosis with thrombocytopenia syndrome (TTS): systematic review and post hoc analysis: https://pubmed.ncbi.nlm.nih.gov/34698582/.
Case report of immune thrombocytopenia after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34751013/.
Acute transverse myelitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34684047/.
Concerns for adverse effects of thrombocytopenia and thrombosis after adenovirus-vectored COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34541935/
Major hemorrhagic stroke after ChAdOx1 nCoV-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34273119/
Cerebral venous sinus thrombosis after COVID-19 vaccination: neurologic and radiologic management: https://pubmed.ncbi.nlm.nih.gov/34327553/.
Thrombocytopenia with acute ischemic stroke and hemorrhage in a patient recently vaccinated with an adenoviral vector-based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33877737/
Intracerebral hemorrhage and thrombocytopenia after AstraZeneca COVID-19 vaccine: clinical and diagnostic challenges of vaccine-induced thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34646685/
Minimal change disease with severe acute kidney injury after Oxford-AstraZeneca COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34242687/.
Case report: cerebral sinus vein thrombosis in two patients with AstraZeneca SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34609603/
Case report: Pityriasis rosea-like rash after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34557507/
Extensive longitudinal transverse myelitis after ChAdOx1 nCOV-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34641797/.
Acute eosinophilic pneumonia associated with anti-COVID-19 vaccine AZD1222: https://pubmed.ncbi.nlm.nih.gov/34812326/.
Thrombocytopenia, including immune thrombocytopenia after receiving COVID-19 mRNA vaccines reported to the Vaccine Adverse Event Reporting System (VAERS): https://pubmed.ncbi.nlm.nih.gov/34006408/
A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: victim or causality?: https://pubmed.ncbi.nlm.nih.gov/34416184/
Vaccine-induced immune thrombosis and thrombocytopenia syndrome after adenovirus-vectored severe acute respiratory syndrome coronavirus 2 vaccination: a new hypothesis on mechanisms and implications for future vaccine development: https://pubmed.ncbi.nlm.nih.gov/34664303/.
Thrombosis in peripheral artery disease and thrombotic thrombocytopenia following adenoviral COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34649281/.
Newly diagnosed immune thrombocytopenia in a pregnant patient after coronavirus disease 2019 vaccination: https://pubmed.ncbi.nlm.nih.gov/34420249/
Cerebral venous sinus thrombosis and thrombotic events after vector-based COVID-19 vaccines: systematic review and meta-analysis: https://pubmed.ncbi.nlm.nih.gov/34610990/.
Sweet’s syndrome after Oxford-AstraZeneca COVID-19 vaccine (AZD1222) in an elderly woman: https://pubmed.ncbi.nlm.nih.gov/34590397/
Sudden sensorineural hearing loss after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34670143/.
Prevalence of serious adverse events among health care professionals after receiving the first dose of ChAdOx1 nCoV-19 coronavirus vaccine (Covishield) in Togo, March 2021: https://pubmed.ncbi.nlm.nih.gov/34819146/.
Acute hemichorea-hemibalismus after COVID-19 (AZD1222) vaccination: https://pubmed.ncbi.nlm.nih.gov/34581453/
Recurrence of alopecia areata after covid-19 vaccination: a report of three cases in Italy: https://pubmed.ncbi.nlm.nih.gov/34741583/
Shingles-like skin lesion after vaccination with AstraZeneca for COVID-19: a case report: https://pubmed.ncbi.nlm.nih.gov/34631069/
Thrombosis after COVID-19 vaccination: possible link to ACE pathways: https://pubmed.ncbi.nlm.nih.gov/34479129/
Thrombocytopenia in an adolescent with sickle cell anemia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34331506/
Leukocytoclastic vasculitis as a cutaneous manifestation of ChAdOx1 corona virus vaccine nCoV-19 (recombinant): https://pubmed.ncbi.nlm.nih.gov/34546608/
Abdominal pain and bilateral adrenal hemorrhage from immune thrombotic thrombocytopenia induced by COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34546343/
Longitudinally extensive cervical myelitis after vaccination with inactivated virus based COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34849183/
Induction of cutaneous leukocytoclastic vasculitis after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34853744/.
A case of toxic epidermal necrolysis after vaccination with ChAdOx1 nCoV-19 (AZD1222): https://pubmed.ncbi.nlm.nih.gov/34751429/.
Ocular adverse events following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34559576/
Depression after ChAdOx1-S / nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34608345/.
Venous thromboembolism and mild thrombocytopenia after ChAdOx1 nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34384129/.
Recurrent ANCA-associated vasculitis after Oxford AstraZeneca ChAdOx1-S COVID-19 vaccination: a case series of two patients: https://pubmed.ncbi.nlm.nih.gov/34755433/
Major artery thrombosis and vaccination against ChAdOx1 nCov-19: https://pubmed.ncbi.nlm.nih.gov/34839830/
Rare case of contralateral supraclavicular lymphadenopathy after vaccination with COVID-19: computed tomography and ultrasound findings: https://pubmed.ncbi.nlm.nih.gov/34667486/
Cutaneous lymphocytic vasculitis after administration of the second dose of AZD1222 (Oxford-AstraZeneca) Severe acute respiratory syndrome Coronavirus 2 vaccine: chance or causality: https://pubmed.ncbi.nlm.nih.gov/34726187/.
Pancreas allograft rejection after ChAdOx1 nCoV-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34781027/
Understanding the risk of thrombosis with thrombocytopenia syndrome following Ad26.COV2.S vaccination: https://pubmed.ncbi.nlm.nih.gov/34595694/
Cutaneous adverse reactions of 35,229 doses of COVID-19 Sinovac and AstraZeneca vaccine COVID-19: a prospective cohort study in health care workers: https://pubmed.ncbi.nlm.nih.gov/34661934/
Comments on thrombosis after vaccination: spike protein leader sequence could be responsible for thrombosis and antibody-mediated thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34788138
Eosinophilic dermatosis after AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34753210/.
Severe immune thrombocytopenia following COVID-19 vaccination: report of four cases and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34653943/.
Relapse of immune thrombocytopenia after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34591991/
Thrombosis in pre- and post-vaccination phase of COVID-19; https://pubmed.ncbi.nlm.nih.gov/34650382/
A look at the role of postmortem immunohistochemistry in understanding the inflammatory pathophysiology of COVID-19 disease and vaccine-related thrombotic adverse events: a narrative review: https://pubmed.ncbi.nlm.nih.gov/34769454/
COVID-19 vaccine in patients with hypercoagulability disorders: a clinical perspective: https://pubmed.ncbi.nlm.nih.gov/34786893/
Vaccine-associated thrombocytopenia and thrombosis: venous endotheliopathy leading to combined venous micro-macrothrombosis: https://pubmed.ncbi.nlm.nih.gov/34833382/
Thrombosis and thrombocytopenia syndrome causing isolated symptomatic carotid occlusion after COVID-19 Ad26.COV2.S vaccine (Janssen): https://pubmed.ncbi.nlm.nih.gov/34670287/
An unusual presentation of acute deep vein thrombosis after Modern COVID-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34790811/
Immediate high-dose intravenous immunoglobulins followed by direct treatment with thrombin inhibitors is crucial for survival in vaccine-induced immune thrombotic thrombocytopenia Sars-Covid-19-vector adenoviral VITT with venous thrombosis of the cerebral sinus and portal vein: https://pubmed.ncbi.nlm.nih.gov/34023956/.
Thrombosis formation after COVID-19 vaccination immunologic aspects: review article: https://pubmed.ncbi.nlm.nih.gov/34629931/Imaging and hematologic findings in thrombosis and thrombocytopenia after vaccination with ChAdOx1 nCoV-19 (AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34402666/
Spectrum of neuroimaging findings in post-CoVID-19 vaccination: a case series and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34842783/
Cerebral venous sinus thrombosis, pulmonary embolism, and thrombocytopenia after COVID-19 vaccination in a Taiwanese man: a case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34630307/
Fatal cerebral venous sinus thrombosis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33983464/
Autoimmune roots of thrombotic events after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34508917/.
New portal vein thrombosis in cirrhosis: is thrombophilia exacerbated by vaccine or COVID-19: https://www.jcehepatology.com/article/S0973-6883(21)00545-4/fulltext.
Images of immune thrombotic thrombocytopenia induced by Oxford / AstraZeneca® COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33962903/.
Cerebral venous sinus thrombosis after vaccination with COVID-19 mRNA of BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34796065/.
Increased risk of urticaria/angioedema after BNT162b2 mRNA COVID-19 vaccination in health care workers taking ACE inhibitors: https://pubmed.ncbi.nlm.nih.gov/34579248/
A case of unusual mild clinical presentation of COVID-19 vaccine-induced immune thrombotic thrombocytopenia with splanchnic vein thrombosis: https://pubmed.ncbi.nlm.nih.gov/34843991/
Cerebral venous sinus thrombosis following vaccination with Pfizer-BioNTech COVID-19 (BNT162b2): https://pubmed.ncbi.nlm.nih.gov/34595867/
A case of idiopathic thrombocytopenic purpura after a booster dose of COVID-19 BNT162b2 vaccine (Pfizer-Biontech): https://pubmed.ncbi.nlm.nih.gov/34820240/
Vaccine-induced immune thrombotic immune thrombocytopenia (VITT): targeting pathologic mechanisms with Bruton’s tyrosine kinase inhibitors: https://pubmed.ncbi.nlm.nih.gov/33851389/
Thrombotic thrombocytopenic purpura after vaccination with Ad26.COV2-S: https://pubmed.ncbi.nlm.nih.gov/33980419/
Thromboembolic events in younger females exposed to Pfizer-BioNTech or Moderna COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34264151/
Potential risk of thrombotic events after COVID-19 vaccination with Oxford-AstraZeneca in women receiving estrogen: https://pubmed.ncbi.nlm.nih.gov/34734086/
Thrombosis after adenovirus-vectored COVID-19 vaccination: a concern for underlying disease: https://pubmed.ncbi.nlm.nih.gov/34755555/
Adenovirus interactions with platelets and coagulation and vaccine-induced immune thrombotic thrombocytopenia syndrome: https://pubmed.ncbi.nlm.nih.gov/34407607/
Thrombotic thrombocytopenic purpura: a new threat after COVID bnt162b2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34264514/.
Unusual site of deep vein thrombosis after vaccination against coronavirus mRNA-2019 coronavirus disease (COVID-19): https://pubmed.ncbi.nlm.nih.gov/34840204/
Neurological side effects of SARS-CoV-2 vaccines: https://pubmed.ncbi.nlm.nih.gov/34750810/
Coagulopathies after SARS-CoV-2 vaccination may derive from a combined effect of SARS-CoV-2 spike protein and adenovirus vector-activated signaling pathways: https://pubmed.ncbi.nlm.nih.gov/34639132/
Isolated pulmonary embolism after COVID vaccination: 2 case reports and a review of acute pulmonary embolism complications and follow-up: https://pubmed.ncbi.nlm.nih.gov/34804412/
Central retinal vein occlusion after vaccination with SARS-CoV-2 mRNA: case report: https://pubmed.ncbi.nlm.nih.gov/34571653/.
Complicated case report of long-term vaccine-induced thrombotic immune thrombocytopenia A: https://pubmed.ncbi.nlm.nih.gov/34835275/.
Deep venous thrombosis after vaccination with Ad26.COV2.S in adult males: https://pubmed.ncbi.nlm.nih.gov/34659839/.
Neurological autoimmune diseases after SARS-CoV-2 vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34668274/.
Severe autoimmune hemolytic autoimmune anemia after receiving SARS-CoV-2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34549821/
Occurrence of COVID-19 variants among recipients of ChAdOx1 nCoV-19 vaccine (recombinant): https://pubmed.ncbi.nlm.nih.gov/34528522/
Prevalence of thrombocytopenia, anti-platelet factor 4 antibodies, and elevated D-dimer in Thais after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34568726/
Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab989/644 5179.
Myocarditis after 2019 coronavirus disease mRNA vaccine: a case series and determination of incidence rate: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab926/6420408
Myocarditis and pericarditis after COVID-19 vaccination: inequalities in age and vaccine types: https://www.mdpi.com/2075-4426/11/11/1106
Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study: https://pubmed.ncbi.nlm.nih.gov/34402230/
Shedding light on post-vaccination myocarditis and pericarditis in COVID-19 and non-COVID-19 vaccine recipients: https://pubmed.ncbi.nlm.nih.gov/34696294/
Myocarditis Following mRNA COVID-19 Vaccine: https://journals.lww.com/pec-online/Abstract/2021/11000/Myocarditis_Following_ mRNA_COVID_19_Vaccine.9.aspx.
Myocarditis following BNT162b2 mRNA Covid-19 mRNA vaccine in Israel: https://pubmed.ncbi.nlm.nih.gov/34614328/.
Myocarditis, pericarditis, and cardiomyopathy following COVID-19 vaccination: https://www.heartlungcirc.org/article/S1443-9506(21)01156-2/fulltext
Myocarditis and other cardiovascular complications of COVID-19 mRNA-based COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34277198/
Possible Association Between COVID-19 Vaccine and Myocarditis: Clinical and CMR Findings: https://pubmed.ncbi.nlm.nih.gov/34246586/
Hypersensitivity Myocarditis and COVID-19 Vaccines: https://pubmed.ncbi.nlm.nih.gov/34856634/.
Severe myocarditis associated with COVID-19 vaccine: zebra or unicorn?: https://www.internationaljournalofcardiology.com/article/S0167-5273(21)01477-7/fulltext.
Acute myocardial infarction and myocarditis after COVID-19 vaccination: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8522388/
Myocarditis after Covid-19 vaccination in a large healthcare organization: https://www.nejm.org/doi/10.1056/NEJMoa2110737
Association of myocarditis with COVID-19 messenger RNA BNT162b2 vaccine in a case series of children: https://jamanetwork.com/journals/jamacardiology/fullarticle/2783052
Clinical suspicion of myocarditis temporally related to COVID-19 vaccination in adolescents and young adults: https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.121.056583?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
STEMI mimicry: focal myocarditis in an adolescent patient after COVID-19 mRNA vaccination:. https://pubmed.ncbi.nlm.nih.gov/34756746/
Myocarditis and pericarditis in association with COVID-19 mRNA vaccination: cases from a regional pharmacovigilance center: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8587334/
Myocarditis after COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34546329/.
Patients with acute myocarditis after COVID-19 mRNA vaccination:. https://jamanetwork.com/journals/jamacardiology/fullarticle/2781602.Myocarditis after COVID-19 vaccination: a case series: https://www.sciencedirect.com/science/article/pii/S0264410X21011725?via%3Dihub.
Myocarditis associated with COVID-19 vaccination in adolescents: https://publications.aap.org/pediatrics/article/148/5/e2021053427/181357
Myocarditis findings on cardiac magnetic resonance imaging after vaccination with COVID-19 mRNA in adolescents:. https://pubmed.ncbi.nlm.nih.gov/34704459/
Myocarditis after COVID-19 vaccination: magnetic resonance imaging study: https://academic.oup.com/ehjcimaging/advance-article/doi/10.1093/ehjci/jeab230/6 421640.
Acute myocarditis after administration of the second dose of BNT162b2 COVID-19 vaccine: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8599115/
Myocarditis after COVID-19 vaccination: https://www.sciencedirect.com/science/article/pii/S2352906721001603
Case report: probable myocarditis after Covid-19 mRNA vaccine in a patient with arrhythmogenic left ventricular cardiomyopathy: https://pubmed.ncbi.nlm.nih.gov/34712717/.
Acute myocarditis after administration of BNT162b2 vaccine against COVID-19: https://www.revespcardiol.org/en-linkresolver-acute-myocarditis-after-administration-bnt162b2-S188558572100133X.
Myocarditis associated with COVID-19 mRNA vaccination: https://pubs.rsna.org/doi/10.1148/radiol.2021211430
Acute myocarditis after COVID-19 vaccination: a case report: https://www.sciencedirect.com/science/article/pii/S0248866321007098
Acute myopericarditis after COVID-19 vaccination in adolescents:. https://pubmed.ncbi.nlm.nih.gov/34589238/.
Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccination: https://academic.oup.com/jpids/article/10/10/962/6329543.
Acute myocarditis associated with anti-COVID-19 vaccination: https://ecevr.org/DOIx.php?id=10.7774/cevr.2021.10.2.196.
Myocarditis associated with COVID-19 vaccination: echocardiographic, cardiac CT, and MRI findings:. https://pubmed.ncbi.nlm.nih.gov/34428917/.
Acute symptomatic myocarditis in 7 adolescents after Pfizer-BioNTech COVID-19 vaccination:. https://pubmed.ncbi.nlm.nih.gov/34088762/.
Myocarditis and pericarditis in adolescents after first and second doses of COVID-19 mRNA vaccines:. https://academic.oup.com/ehjqcco/advance-article/doi/10.1093/ehjqcco/qcab090/64 42104.
COVID 19 vaccine for adolescents. Concern for myocarditis and pericarditis: https://www.mdpi.com/2036-7503/13/3/61.
Cardiac imaging of acute myocarditis after vaccination with COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34402228/
Myocarditis temporally associated with COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34133885/
Acute myocardial injury after COVID-19 vaccination: a case report and review of current evidence from the vaccine adverse event reporting system database: https://pubmed.ncbi.nlm.nih.gov/34219532/
Acute myocarditis associated with COVID-19 vaccination: report of a case: https://www.ncbi.nlm.nih.gov/labs/pmc/articles/PMC8639400/
Myocarditis following vaccination with COVID-19 messenger RNA: a Japanese case series: https://pubmed.ncbi.nlm.nih.gov/34840235/.
Myocarditis in the setting of a recent COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34712497/.
Acute myocarditis after a second dose of COVID-19 mRNA vaccine: report of two cases: https://www.clinicalimaging.org/article/S0899-7071(21)00265-5/fulltext.
Prevalence of thrombocytopenia, antiplatelet factor 4 antibodies, and elevated D-dimer in Thais after vaccination with ChAdOx1 nCoV-19: https://pubmed.ncbi.nlm.nih.gov/34568726/
Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciab989/6445179
Myocarditis after 2019 coronavirus disease mRNA vaccine: a case series and incidence rate determination: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciab926/6420408.
Myocarditis and pericarditis after COVID-19 vaccination: inequalities in age and vaccine types: https://www.mdpi.com/2075-4426/11/11/1106
Epidemiology and clinical features of myocarditis/pericarditis before the introduction of COVID-19 mRNA vaccine in Korean children: a multicenter study: https://pubmed.ncbi.nlm.nih.gov/34402230/
Shedding light on post-vaccination myocarditis and pericarditis in COVID-19 and non-COVID-19 vaccine recipients: https://pubmed.ncbi.nlm.nih.gov/34696294/
Diffuse prothrombotic syndrome after administration of ChAdOx1 nCoV-19 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34615534/
Three cases of acute venous thromboembolism in women after coronavirus 2019 vaccination: https://pubmed.ncbi.nlm.nih.gov/34352418/
Clinical and biological features of cerebral venous sinus thrombosis after vaccination with ChAdOx1 nCov-19; https://jnnp.bmj.com/content/early/2021/09/29/jnnp-2021-327340.
COV2-S vaccination may reveal hereditary thrombophilia: massive cerebral venous sinus thrombosis in a young man with normal platelet count: https://pubmed.ncbi.nlm.nih.gov/34632750/
Post-mortem findings in vaccine-induced thrombotic thrombocytopenia: https://haematologica.org/article/view/haematol.2021.279075
COVID-19 vaccine-induced thrombosis: https://pubmed.ncbi.nlm.nih.gov/34802488/.
Inflammation and platelet activation after COVID-19 vaccines: possible mechanisms behind vaccine-induced immune thrombocytopenia and thrombosis: https://pubmed.ncbi.nlm.nih.gov/34887867/.
Anaphylactoid reaction and coronary thrombosis related to COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34863404/.
Vaccine-induced cerebral venous thrombosis and thrombocytopenia. Oxford-AstraZeneca COVID-19: a missed opportunity for rapid return on experience: https://www.sciencedirect.com/science/article/pii/S235255682100093X
Occurrence of splenic infarction due to arterial thrombosis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34876440/
Deep venous thrombosis more than two weeks after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33928773/
Case report: Take a second look: Cerebral venous thrombosis related to Covid-19 vaccination and thrombotic thrombocytopenia syndrome: https://pubmed.ncbi.nlm.nih.gov/34880826/
VERY IMPORTANT (Case report of a vaccine induced death) – Myocarditis-induced sudden death after BNT162b2 COVID-19 mRNA vaccination in Korea: case report focusing on histopathological findings: https://pubmed.ncbi.nlm.nih.gov/34664804/
Information on ChAdOx1 nCoV-19 vaccine-induced immune-mediated thrombotic thrombocytopenia: https://pubmed.ncbi.nlm.nih.gov/34587242/
Change in blood viscosity after COVID-19 vaccination: estimation for persons with underlying metabolic syndrome: https://pubmed.ncbi.nlm.nih.gov/34868465/
Management of a patient with a rare congenital limb malformation syndrome after SARS-CoV-2 vaccine-induced thrombosis and thrombocytopenia (VITT): https://pubmed.ncbi.nlm.nih.gov/34097311/
Bilateral thalamic stroke: a case of COVID-19 (VITT) vaccine-induced immune thrombotic thrombocytopenia or a coincidence due to underlying risk factors: https://pubmed.ncbi.nlm.nih.gov/34820232/.
Thrombocytopenia and splanchnic thrombosis after vaccination with Ad26.COV2.S successfully treated with transjugular intrahepatic intrahepatic portosystemic shunt and thrombectomy: https://onlinelibrary.wiley.com/doi/10.1002/ajh.26258
Incidence of acute ischemic stroke after coronavirus vaccination in Indonesia: case series: https://pubmed.ncbi.nlm.nih.gov/34579636/
Successful treatment of vaccine-induced immune immune thrombotic thrombocytopenia in a 26-year-old female patient: https://pubmed.ncbi.nlm.nih.gov/34614491/
Case report: vaccine-induced immune immune thrombotic thrombocytopenia in a patient with pancreatic cancer after vaccination with messenger RNA-1273: https://pubmed.ncbi.nlm.nih.gov/34790684/
Idiopathic idiopathic external jugular vein thrombophlebitis after coronavirus disease vaccination (COVID-19): https://pubmed.ncbi.nlm.nih.gov/33624509/.
Squamous cell carcinoma of the lung with hemoptysis following vaccination with tozinameran (BNT162b2, Pfizer-BioNTech): https://pubmed.ncbi.nlm.nih.gov/34612003/
Vaccine-induced thrombotic thrombocytopenia after Ad26.COV2.S vaccination in a man presenting as acute venous thromboembolism: https://pubmed.ncbi.nlm.nih.gov/34096082/
Myocarditis associated with COVID-19 vaccination in three adolescent boys: https://pubmed.ncbi.nlm.nih.gov/34851078/.
Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis after COVID-19 mRNA vaccination: a case series: https://pubmed.ncbi.nlm.nih.gov/34496880/
Perimyocarditis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34866957/
Epidemiology of acute myocarditis/pericarditis in Hong Kong adolescents after co-vaccination: https://pubmed.ncbi.nlm.nih.gov/34849657/.
Acute myocarditis after vaccination with COVID-19 mRNA in adults aged 18 years or older: https://pubmed.ncbi.nlm.nih.gov/34605853/
Recurrence of acute myocarditis temporally associated with receipt of the 2019 coronavirus mRNA disease vaccine (COVID-19) in an adolescent male: https://pubmed.ncbi.nlm.nih.gov/34166671/
Young male with myocarditis after mRNA-1273 coronavirus disease-2019 (COVID-19) mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34744118/
Acute myocarditis after SARS-CoV-2 vaccination in a 24-year-old male: https://pubmed.ncbi.nlm.nih.gov/34334935/.
Ga-DOTATOC digital PET images of inflammatory cell infiltrates in myocarditis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34746968/
Occurrence of acute infarct-like myocarditis after vaccination with COVID-19: just an accidental coincidence or rather a vaccination-associated autoimmune myocarditis?”: https://pubmed.ncbi.nlm.nih.gov/34333695/.
Self-limited myocarditis presenting with chest pain and ST-segment elevation in adolescents after vaccination with BNT162b2 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34180390/
Myocarditis Following Immunization with COVID-19 mRNA Vaccines in Members of the U.S. Military: https://pubmed.ncbi.nlm.nih.gov/34185045/
Myocarditis after BNT162b2 vaccination in a healthy male: https://pubmed.ncbi.nlm.nih.gov/34229940/
Myopericarditis in a previously healthy adolescent male after COVID-19 vaccination: Case report: https://pubmed.ncbi.nlm.nih.gov/34133825/
Acute myocarditis after SARS-CoV-2 mRNA-1273 mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34308326/.
Chest pain with abnormal electrocardiogram redevelopment after injection of COVID-19 vaccine manufactured by Moderna: https://pubmed.ncbi.nlm.nih.gov/34866106/
Biopsy-proven lymphocytic myocarditis after first vaccination with COVID-19 mRNA in a 40-year-old man: case report: https://pubmed.ncbi.nlm.nih.gov/34487236/
Multimodality imaging and histopathology in a young man presenting with fulminant lymphocytic myocarditis and cardiogenic shock after vaccination with mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34848416/
Report of a case of myopericarditis after vaccination with BNT162b2 COVID-19 mRNA in a young Korean male: https://pubmed.ncbi.nlm.nih.gov/34636504/
Acute myocarditis after Comirnaty vaccination in a healthy male with previous SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34367386/
Acute myocarditis in a young adult two days after vaccination with Pfizer: https://pubmed.ncbi.nlm.nih.gov/34709227/
Case report: acute fulminant myocarditis and cardiogenic shock after messenger RNA coronavirus vaccination in 2019 requiring extracorporeal cardiopulmonary resuscitation: https://pubmed.ncbi.nlm.nih.gov/34778411/
Acute myocarditis after 2019 coronavirus disease vaccination: https://pubmed.ncbi.nlm.nih.gov/34734821/
A series of patients with myocarditis after vaccination against SARS-CoV-2 with mRNA-1279 and BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34246585/
Myopericarditis after Pfizer messenger ribonucleic acid coronavirus coronavirus disease vaccine in adolescents: https://pubmed.ncbi.nlm.nih.gov/34228985/
Post-vaccination multisystem inflammatory syndrome in adults without evidence of prior SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34852213/
Acute myocarditis defined after vaccination with 2019 mRNA of coronavirus disease: https://pubmed.ncbi.nlm.nih.gov/34866122/
Biventricular systolic dysfunction in acute myocarditis after SARS-CoV-2 mRNA-1273 vaccination: https://pubmed.ncbi.nlm.nih.gov/34601566/
Myocarditis following COVID-19 vaccination: MRI study: https://pubmed.ncbi.nlm.nih.gov/34739045/.
Acute myocarditis after COVID-19 vaccination: case report: https://docs.google.com/document/d/1Hc4bh_qNbZ7UVm5BLxkRdMPnnI9zcCsl/e
Association of myocarditis with COVID-19 messenger RNA BNT162b2 vaccine COVID-19 in a case series of children: https://pubmed.ncbi.nlm.nih.gov/34374740/
Clinical suspicion of myocarditis temporally related to COVID-19 vaccination in adolescents and young adults: https://pubmed.ncbi.nlm.nih.gov/34865500/
Myocarditis following vaccination with Covid-19 in a large healthcare organization: https://pubmed.ncbi.nlm.nih.gov/34614329/
AstraZeneca COVID-19 vaccine and Guillain-Barré syndrome in Tasmania: a causal link: https://pubmed.ncbi.nlm.nih.gov/34560365/
COVID-19, Guillain-Barré and vaccineA dangerous mix: https://pubmed.ncbi.nlm.nih.gov/34108736/.
Guillain-Barré syndrome after the first dose of Pfizer-BioNTech COVID-19 vaccine: case report and review of reported cases: https://pubmed.ncbi.nlm.nih.gov/34796417/.
Guillain-Barre syndrome after BNT162b2 COVID-19 vaccine: https://link.springer.com/article/10.1007%2Fs10072-021-05523-5.
COVID-19 adenovirus vaccines and Guillain-Barré syndrome with facial palsy: https://onlinelibrary.wiley.com/doi/10.1002/ana.26258.
Association of receipt association of Ad26.COV2.S COVID-19 vaccine with presumed Guillain-Barre syndrome, February-July 2021: https://jamanetwork.com/journals/jama/fullarticle/2785009
A case of Guillain-Barré syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34567447/
Guillain-Barré syndrome associated with COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34648420/.
Rate of recurrent Guillain-Barré syndrome after COVID-19 BNT162b2 mRNA vaccine: https://jamanetwork.com/journals/jamaneurology/fullarticle/2783708
Guillain-Barre syndrome after COVID-19 vaccination in an adolescent: https://www.pedneur.com/article/S0887-8994(21)00221-6/fulltext.
Guillain-Barre syndrome after ChAdOx1-S / nCoV-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34114256/.
Guillain-Barre syndrome after COVID-19 mRNA-1273 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34767184/.
Guillain-Barre syndrome following SARS-CoV-2 vaccination in 19 patients: https://pubmed.ncbi.nlm.nih.gov/34644738/.
Guillain-Barre syndrome presenting with facial diplegia following vaccination with COVID-19 in two patients: https://pubmed.ncbi.nlm.nih.gov/34649856/
A rare case of Guillain-Barré syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34671572/
Neurological complications of COVID-19: Guillain-Barre syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33758714/
COVID-19 vaccine causing Guillain-Barre syndrome, an uncommon potential side effect: https://pubmed.ncbi.nlm.nih.gov/34484780/
Guillain-Barre syndrome after the first dose of COVID-19 vaccination: case report; https://pubmed.ncbi.nlm.nih.gov/34779385/.
Miller Fisher syndrome after Pfizer COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34817727/.
Miller Fisher syndrome after 2019 BNT162b2 mRNA coronavirus vaccination: https://pubmed.ncbi.nlm.nih.gov/34789193/.
Bilateral facial weakness with a variant of paresthesia of Guillain-Barre syndrome after Vaxzevria COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34261746/
Guillain-Barre syndrome after the first injection of ChAdOx1 nCoV-19 vaccine: first report: https://pubmed.ncbi.nlm.nih.gov/34217513/.
A case of sensory ataxic Guillain-Barre syndrome with immunoglobulin G anti-GM1 antibodies after first dose of COVID-19 BNT162b2 mRNA vaccine (Pfizer): https://pubmed.ncbi.nlm.nih.gov/34871447/
Reporting of acute inflammatory neuropathies with COVID-19 vaccines: subgroup disproportionality analysis in VigiBase: https://pubmed.ncbi.nlm.nih.gov/34579259/
A variant of Guillain-Barré syndrome after SARS-CoV-2 vaccination: AMSAN: https://pubmed.ncbi.nlm.nih.gov/34370408/.
A rare variant of Guillain-Barré syndrome after vaccination with Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34703690/.
Guillain-Barré syndrome after SARS-CoV-2 vaccination in a patient with previous vaccine-associated Guillain-Barré syndrome: https://pubmed.ncbi.nlm.nih.gov/34810163/
Guillain-Barré syndrome in an Australian state using mRNA and adenovirus-vector SARS-CoV-2 vaccines: https://onlinelibrary.wiley.com/doi/10.1002/ana.26218.
Acute transverse myelitis after SARS-CoV-2 vaccination: case report and review of the literature: https://pubmed.ncbi.nlm.nih.gov/34482455/.
Variant Guillain-Barré syndrome occurring after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34114269/.
Guillian-Barre syndrome with axonal variant temporally associated with Modern SARS-CoV-2 mRNA-based vaccine: https://pubmed.ncbi.nlm.nih.gov/34722067/
Guillain-Barre syndrome after the first dose of SARS-CoV-2 vaccine: a temporary occurrence, not a causal association: https://pubmed.ncbi.nlm.nih.gov/33968610/
SARS-CoV-2 vaccines can be complicated not only by Guillain-Barré syndrome but also by distal small fiber neuropathy: https://pubmed.ncbi.nlm.nih.gov/34525410/
Clinical variant of Guillain-Barré syndrome with prominent facial diplegia after AstraZeneca 2019 coronavirus disease vaccine: https://pubmed.ncbi.nlm.nih.gov/34808658/
Adverse event reporting and risk of Bell’s palsy after COVID-19 vaccination: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00646-0/fulltext.
Bilateral facial nerve palsy and COVID-19 vaccination: causality or coincidence: https://pubmed.ncbi.nlm.nih.gov/34522557/
Left Bell’s palsy after the first dose of mRNA-1273 SARS-CoV-2 vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34763263/.
Bell’s palsy after inactivated vaccination with COVID-19 in a patient with a history of recurrent Bell’s palsy: case report: https://pubmed.ncbi.nlm.nih.gov/34621891/
Neurological complications after the first dose of COVID-19 vaccines and SARS-CoV-2 infection: https://pubmed.ncbi.nlm.nih.gov/34697502/
Type I interferons as a potential mechanism linking COVID-19 mRNA vaccines with Bell’s palsy: https://pubmed.ncbi.nlm.nih.gov/33858693/
Acute transverse myelitis following inactivated COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34370410/
Acute transverse myelitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34579245/.
A case of longitudinally extensive transverse myelitis following Covid-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34182207/
Post COVID-19 transverse myelitis; a case report with review of the literature: https://pubmed.ncbi.nlm.nih.gov/34457267/.
Beware of neuromyelitis optica spectrum disorder after vaccination with inactivated virus for COVID-19: https://pubmed.ncbi.nlm.nih.gov/34189662/
Neuromyelitis optica in a healthy woman after vaccination against severe acute respiratory syndrome coronavirus 2 mRNA-1273: https://pubmed.ncbi.nlm.nih.gov/34660149/
Acute bilateral bilateral optic neuritis/chiasm with longitudinal extensive transverse myelitis in long-standing stable multiple sclerosis after vector-based vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34131771/
A case series of acute pericarditis after vaccination with COVID-19 in the context of recent reports from Europe and the United States: https://pubmed.ncbi.nlm.nih.gov/34635376/
Acute pericarditis and cardiac tamponade after vaccination with Covid-19: https://pubmed.ncbi.nlm.nih.gov/34749492/
Myocarditis and pericarditis in adolescents after the first and second doses of COVID-19 mRNA vaccines: https://pubmed.ncbi.nlm.nih.gov/34849667/
Perimyocarditis in adolescents after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34319393/
Acute myopericarditis after COVID-19 vaccine in adolescents: https://pubmed.ncbi.nlm.nih.gov/34589238/
Pericarditis after administration of the BNT162b2 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34149145/
Case report: symptomatic pericarditis post COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34693198/.
An outbreak of Still’s disease after COVID-19 vaccination in a 34-year-old patient: https://pubmed.ncbi.nlm.nih.gov/34797392/
Hemophagocytic lymphohistiocytosis following COVID-19 vaccination (ChAdOx1 nCoV-19): https://pubmed.ncbi.nlm.nih.gov/34862234/
Myocarditis after SARS-CoV-2 mRNA vaccination, a case series: https://pubmed.ncbi.nlm.nih.gov/34396358/.
Miller-Fisher syndrome and Guillain-Barré syndrome overlap syndrome in a patient after Oxford-AstraZeneca SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34848426/.
Immune-mediated disease outbreaks or new-onset disease in 27 subjects after mRNA/DNA vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/33946748/
Post-mortem investigation of deaths after vaccination with COVID-19 vaccines: https://pubmed.ncbi.nlm.nih.gov/34591186/
Acute kidney injury with macroscopic hematuria and IgA nephropathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34352309/
Relapse of immune thrombocytopenia after covid-19 vaccination in young male patient: https://pubmed.ncbi.nlm.nih.gov/34804803/.
Immune thrombocytopenic purpura associated with COVID-19 mRNA vaccine Pfizer-BioNTech BNT16B2b2: https://pubmed.ncbi.nlm.nih.gov/34077572/
Retinal hemorrhage after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34884407/.
Case report: anti-neutrophil cytoplasmic antibody-associated vasculitis with acute renal failure and pulmonary hemorrhage can occur after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34859017/
Intracerebral hemorrhage due to vasculitis following COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34783899/
Peduncular, symptomatic cavernous bleeding after immune thrombocytopenia-induced SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34549178/.
Brain death in a vaccinated patient with COVID-19 infection: https://pubmed.ncbi.nlm.nih.gov/34656887/
Generalized purpura annularis telangiectodes after SARS-CoV-2 mRNA vaccination: https://pubmed.ncbi.nlm.nih.gov/34236717/.
Lobar hemorrhage with ventricular rupture shortly after the first dose of a SARS-CoV-2 mRNA-based SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34729467/.
A case of outbreak of macroscopic hematuria and IgA nephropathy after SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/33932458/
Acral hemorrhage after administration of the second dose of SARS-CoV-2 vaccine. A post-vaccination reaction: https://pubmed.ncbi.nlm.nih.gov/34092400/742.
Severe immune thrombocytopenic purpura after SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34754937/
Gross hematuria after severe acute respiratory syndrome coronavirus 2 vaccination in 2 patients with IgA nephropathy: https://pubmed.ncbi.nlm.nih.gov/33771584/
Autoimmune encephalitis after ChAdOx1-S SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34846583/
COVID-19 vaccine and death: causality algorithm according to the WHO eligibility diagnosis: https://pubmed.ncbi.nlm.nih.gov/34073536/
Bell’s palsy after vaccination with mRNA (BNT162b2) and inactivated (CoronaVac) SARS-CoV-2 vaccines: a case series and a nested case-control study: https://pubmed.ncbi.nlm.nih.gov/34411532/
Epidemiology of myocarditis and pericarditis following mRNA vaccines in Ontario, Canada: by vaccine product, schedule, and interval: https://www.medrxiv.org/content/10.1101/2021.12.02.21267156v1
Anaphylaxis following Covid-19 vaccine in a patient with cholinergic urticaria: https://pubmed.ncbi.nlm.nih.gov/33851711/
Anaphylaxis induced by CoronaVac COVID-19 vaccine: clinical features and results of revaccination: https://pubmed.ncbi.nlm.nih.gov/34675550/.
Anaphylaxis after Modern COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34734159/.
Association of self-reported history of high-risk allergy with allergy symptoms after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34698847/
Sex differences in the incidence of anaphylaxis to LNP-mRNA vaccines COVID-19: https://pubmed.ncbi.nlm.nih.gov/34020815/
Allergic reactions, including anaphylaxis, after receiving the first dose of Pfizer-BioNTech COVID-19 vaccine – United States, December 14 to 23, 2020: https://pubmed.ncbi.nlm.nih.gov/33641264/
Allergic reactions, including anaphylaxis, after receiving the first dose of Modern COVID-19 vaccine – United States, December 21, 2020 to January 10, 2021: https://pubmed.ncbi.nlm.nih.gov/33641268/
Prolonged anaphylaxis to Pfizer 2019 coronavirus disease vaccine: a case report and mechanism of action: https://pubmed.ncbi.nlm.nih.gov/33834172/
Anaphylaxis reactions to Pfizer BNT162b2 vaccine: report of 3 cases of anaphylaxis following vaccination with Pfizer BNT162b2: https://pubmed.ncbi.nlm.nih.gov/34579211/
Biphasic anaphylaxis after first dose of 2019 messenger RNA coronavirus disease vaccine with positive polysorbate 80 skin test result: https://pubmed.ncbi.nlm.nih.gov/34343674/
Acute myocardial infarction and myocarditis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34586408/
Takotsubo syndrome after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34539938/.
Takotsubo cardiomyopathy after coronavirus 2019 vaccination in patient on maintenance hemodialysis: https://pubmed.ncbi.nlm.nih.gov/34731486/.
Premature myocardial infarction or side effect of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33824804/
Myocardial infarction, stroke, and pulmonary embolism after BNT162b2 mRNA COVID-19 vaccine in persons aged 75 years or older: https://pubmed.ncbi.nlm.nih.gov/34807248/
Kounis syndrome type 1 induced by inactivated SARS-COV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34148772/
Acute myocardial infarction within 24 hours after COVID-19 vaccination: is Kounis syndrome the culprit: https://pubmed.ncbi.nlm.nih.gov/34702550/
Deaths associated with the recently launched SARS-CoV-2 vaccination (Comirnaty®): https://pubmed.ncbi.nlm.nih.gov/33895650/
Deaths associated with recently launched SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34425384/
A case of acute encephalopathy and non-ST-segment elevation myocardial infarction after vaccination with mRNA-1273: possible adverse effect: https://pubmed.ncbi.nlm.nih.gov/34703815/
COVID-19 vaccine-induced urticarial vasculitis: https://pubmed.ncbi.nlm.nih.gov/34369046/.
ANCA-associated vasculitis after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34280507/.
New-onset leukocytoclastic vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34241833/
Cutaneous small vessel vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34529877/.
Outbreak of leukocytoclastic vasculitis after COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33928638/
Leukocytoclastic vasculitis after exposure to COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34836739/
Vasculitis and bursitis in [ 18 F] FDG-PET/CT after COVID-19 mRNA vaccine: post hoc ergo propter hoc?; https://pubmed.ncbi.nlm.nih.gov/34495381/.
Cutaneous lymphocytic vasculitis after administration of COVID-19 mRNA vaccine: https://pubmed.ncbi.nlm.nih.gov/34327795
Cutaneous leukocytoclastic vasculitis induced by Sinovac COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34660867/.
Case report: ANCA-associated vasculitis presenting with rhabdomyolysis and crescentic Pauci-Inmune glomerulonephritis after vaccination with Pfizer-BioNTech COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34659268/
Reactivation of IgA vasculitis after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34848431/
Varicella-zoster virus-related small-vessel vasculitis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34310759/.
Imaging in vascular medicine: leukocytoclastic vasculitis after COVID-19 vaccine booster: https://pubmed.ncbi.nlm.nih.gov/34720009/
A rare case of Henoch-Schönlein purpura after a case report of COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34518812/
Cutaneous vasculitis following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34611627/.
Possible case of COVID-19 mRNA vaccine-induced small-vessel vasculitis: https://pubmed.ncbi.nlm.nih.gov/34705320/.
IgA vasculitis following COVID-19 vaccination in an adult: https://pubmed.ncbi.nlm.nih.gov/34779011/
Propylthiouracil-induced anti-neutrophil cytoplasmic antibody-associated vasculitis following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34451967/
Coronavirus disease vaccine 2019 (COVID-19) in systemic lupus erythematosus and neutrophil anti-cytoplasmic antibody-associated vasculitis: https://pubmed.ncbi.nlm.nih.gov/33928459/
Reactivation of IgA vasculitis after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34250509/
Clinical and histopathologic spectrum of delayed adverse skin reactions after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34292611/.
First description of immune complex vasculitis after COVID-19 vaccination with BNT162b2: case report: https://pubmed.ncbi.nlm.nih.gov/34530771/.
Nephrotic syndrome and vasculitis after SARS-CoV-2 vaccine: true association or circumstantial: https://pubmed.ncbi.nlm.nih.gov/34245294/.
Occurrence of de novo cutaneous vasculitis after vaccination against coronavirus disease (COVID-19): https://pubmed.ncbi.nlm.nih.gov/34599716/.
Asymmetric cutaneous vasculitis after COVID-19 vaccination with unusual preponderance of eosinophils: https://pubmed.ncbi.nlm.nih.gov/34115904/.
Henoch-Schönlein purpura occurring after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34247902/.
Henoch-Schönlein purpura following the first dose of COVID-19 viral vector vaccine: case report: https://pubmed.ncbi.nlm.nih.gov/34696186/.
Granulomatous vasculitis after AstraZeneca anti-SARS-CoV-2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34237323/.
Acute retinal necrosis due to varicella zoster virus reactivation after vaccination with BNT162b2 COVID-19 mRNA: https://pubmed.ncbi.nlm.nih.gov/34851795/.
A case of generalized Sweet’s syndrome with vasculitis triggered by recent vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34849386/
Small-vessel vasculitis following Oxford-AstraZeneca vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34310763/
Relapse of microscopic polyangiitis after COVID-19 vaccination: case report: https://pubmed.ncbi.nlm.nih.gov/34251683/.
Cutaneous vasculitis after severe acute respiratory syndrome coronavirus 2 vaccine: https://pubmed.ncbi.nlm.nih.gov/34557622/.
Recurrent herpes zoster after COVID-19 vaccination in patients with chronic urticaria on cyclosporine treatment – A report of 3 cases: https://pubmed.ncbi.nlm.nih.gov/34510694/
Leukocytoclastic vasculitis after coronavirus disease vaccination 2019: https://pubmed.ncbi.nlm.nih.gov/34713472/803
Outbreaks of mixed cryoglobulinemia vasculitis after vaccination against SARS-CoV-2: https://pubmed.ncbi.nlm.nih.gov/34819272/
Cutaneous small-vessel vasculitis after vaccination with a single dose of Janssen Ad26.COV2.S: https://pubmed.ncbi.nlm.nih.gov/34337124/
Case of immunoglobulin A vasculitis after vaccination against coronavirus disease 2019: https://pubmed.ncbi.nlm.nih.gov/34535924/
Rapid progression of angioimmunoblastic T-cell lymphoma after BNT162b2 mRNA booster vaccination: case report: https://www.frontiersin.org/articles/10.3389/fmed.2021.798095/
COVID-19 mRNA vaccination-induced lymphadenopathy mimics lymphoma progression on FDG PET / CT: https://pubmed.ncbi.nlm.nih.gov/33591026/
Lymphadenopathy in COVID-19 vaccine recipients: diagnostic dilemma in oncology patients: https://pubmed.ncbi.nlm.nih.gov/33625300/
Hypermetabolic lymphadenopathy after administration of BNT162b2 mRNA vaccine Covid-19: incidence assessed by [ 18 F] FDG PET-CT and relevance for study interpretation: https://pubmed.ncbi.nlm.nih.gov/33774684/
Lymphadenopathy after COVID-19 vaccination: review of imaging findings: https://pubmed.ncbi.nlm.nih.gov/33985872/
Evolution of bilateral hypermetabolic axillary hypermetabolic lymphadenopathy on FDG PET/CT after 2-dose COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34735411/
Lymphadenopathy associated with COVID-19 vaccination on FDG PET/CT: distinguishing features in adenovirus-vectored vaccine: https://pubmed.ncbi.nlm.nih.gov/34115709/.
COVID-19 vaccination-induced lymphadenopathy in a specialized breast imaging clinic in Israel: analysis of 163 cases: https://pubmed.ncbi.nlm.nih.gov/34257025/.
COVID-19 vaccine-related axillary lymphadenopathy in breast cancer patients: case series with literature review: https://pubmed.ncbi.nlm.nih.gov/34836672/.
Coronavirus disease vaccine 2019 mimics lymph node metastases in patients undergoing skin cancer follow-up: a single-center study: https://pubmed.ncbi.nlm.nih.gov/34280870/
COVID-19 post-vaccination lymphadenopathy: report of fine-needle aspiration biopsy cytologic findings: https://pubmed.ncbi.nlm.nih.gov/34432391/
Regional lymphadenopathy after COVID-19 vaccination: review of the literature and considerations for patient management in breast cancer care: https://pubmed.ncbi.nlm.nih.gov/34731748/
Subclinical axillary lymphadenopathy associated with COVID-19 vaccination on screening mammography: https://pubmed.ncbi.nlm.nih.gov/34906409/
Adverse events of COVID injection that may occur in children.Acute-onset supraclavicular lymphadenopathy coincident with intramuscular mRNA vaccination against COVID-19 may be related to the injection technique of the vaccine, Spain, January and February 2021: https://pubmed.ncbi.nlm.nih.gov/33706861/
Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/
Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] choline PET / CT, not just an FDG finding: https://pubmed.ncbi.nlm.nih.gov/33661328/
Biphasic anaphylaxis after exposure to the first dose of Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
Axillary adenopathy associated with COVID-19 vaccination: imaging findings and follow-up recommendations in 23 women: https://pubmed.ncbi.nlm.nih.gov/33624520/
A case of cervical lymphadenopathy following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34141500/
Unique imaging findings of neurologic phantosmia after Pfizer-BioNtech COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34096896/
Thrombotic adverse events reported for Moderna, Pfizer, and Oxford-AstraZeneca COVID-19 vaccines: comparison of occurrence and clinical outcomes in the EudraVigilance database: https://pubmed.ncbi.nlm.nih.gov/34835256/
Unilateral lymphadenopathy after COVID-19 vaccination: a practical management plan for radiologists of all specialties: https://pubmed.ncbi.nlm.nih.gov/33713605/
Unilateral axillary adenopathy in the setting of COVID-19 vaccination: follow-up: https://pubmed.ncbi.nlm.nih.gov/34298342/
A systematic review of cases of CNS demyelination following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34839149/
Supraclavicular lymphadenopathy after COVID-19 vaccination: an increasing presentation in the two-week wait neck lump clinic: https://pubmed.ncbi.nlm.nih.gov/33685772/
COVID-19 vaccine-related axillary and cervical lymphadenopathy in patients with current or previous breast cancer and other malignancies: cross-sectional imaging findings on MRI, CT and PET-CT: https://pubmed.ncbi.nlm.nih.gov/34719892/
Adenopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625299/.
Incidence of axillary adenopathy on breast imaging after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34292295/.
COVID-19 vaccination and lower cervical lymphadenopathy in two-week neck lump clinic: a follow-up audit: https://pubmed.ncbi.nlm.nih.gov/33947605/.
Cervical lymphadenopathy after coronavirus disease vaccination 2019: clinical features and implications for head and neck cancer services: https://pubmed.ncbi.nlm.nih.gov/34526175/
Lymphadenopathy associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33786231/
Evolution of lymphadenopathy on PET/MRI after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625301/.
Autoimmune hepatitis triggered by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332438/.
New-onset nephrotic syndrome after Janssen COVID-19 vaccination: case report and literature review: https://pubmed.ncbi.nlm.nih.gov/34342187/.
Massive cervical lymphadenopathy following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34601889/
ANCA glomerulonephritis following Modern COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34081948/
Extensive longitudinal transverse myelitis following AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34507942/.
Systemic capillary extravasation syndrome after vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
Unilateral axillary lymphadenopathy related to COVID-19 vaccine: pattern on screening breast MRI allowing benign evaluation: https://pubmed.ncbi.nlm.nih.gov/34325221/
Axillary lymphadenopathy in patients with recent Covid-19 vaccination: a new diagnostic dilemma: https://pubmed.ncbi.nlm.nih.gov/34825530/.
Minimal change disease and acute kidney injury after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34000278/
COVID-19 vaccine-induced unilateral axillary adenopathy: follow-up evaluation in the USA: https://pubmed.ncbi.nlm.nih.gov/34655312/.
Gastroparesis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34187985/.
Acute-onset supraclavicular lymphadenopathy coincident with intramuscular mRNA vaccination against COVID-19 may be related to the injection technique of the vaccine, Spain, January and February 2021: https://pubmed.ncbi.nlm.nih.gov/33706861/
Supraclavicular lymphadenopathy after COVID-19 vaccination in Korea: serial follow-up by ultrasonography: https://pubmed.ncbi.nlm.nih.gov/34116295/
Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] choline PET / CT, not just an FDG finding: https://pubmed.ncbi.nlm.nih.gov/33661328/
Biphasic anaphylaxis after exposure to the first dose of Pfizer-BioNTech COVID-19 mRNA vaccine COVID-19: https://pubmed.ncbi.nlm.nih.gov/34050949/
Axillary adenopathy associated with COVID-19 vaccination: imaging findings and follow-up recommendations in 23 women: https://pubmed.ncbi.nlm.nih.gov/33624520/
A case of cervical lymphadenopathy following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34141500/
Unique imaging findings of neurologic phantosmia after Pfizer-BioNtech COVID-19 vaccination: a case report: https://pubmed.ncbi.nlm.nih.gov/34096896/
Thrombotic adverse events reported for Moderna, Pfizer, and Oxford-AstraZeneca COVID-19 vaccines: comparison of occurrence and clinical outcomes in the EudraVigilance database: https://pubmed.ncbi.nlm.nih.gov/34835256/
Unilateral lymphadenopathy after COVID-19 vaccination: a practical management plan for radiologists of all specialties: https://pubmed.ncbi.nlm.nih.gov/33713605/
Unilateral axillary adenopathy in the setting of COVID-19 vaccination: follow-up: https://pubmed.ncbi.nlm.nih.gov/34298342/
A systematic review of cases of CNS demyelination following COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34839149/
Supraclavicular lymphadenopathy after COVID-19 vaccination: an increasing presentation in the two-week wait neck lump clinic: https://pubmed.ncbi.nlm.nih.gov/33685772/
COVID-19 vaccine-related axillary and cervical lymphadenopathy in patients with current or previous breast cancer and other malignancies: cross-sectional imaging findings on MRI, CT and PET-CT: https://pubmed.ncbi.nlm.nih.gov/34719892/
Adenopathy after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625299/.
Incidence of axillary adenopathy on breast imaging after vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34292295/.
COVID-19 vaccination and lower cervical lymphadenopathy in two-week neck lump clinic: a follow-up audit: https://pubmed.ncbi.nlm.nih.gov/33947605/.
Cervical lymphadenopathy after coronavirus disease vaccination 2019: clinical features and implications for head and neck cancer services: https://pubmed.ncbi.nlm.nih.gov/34526175/
Lymphadenopathy associated with the COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/33786231/
Evolution of lymphadenopathy on PET/MRI after COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/33625301/.
Autoimmune hepatitis triggered by SARS-CoV-2 vaccination: https://pubmed.ncbi.nlm.nih.gov/34332438/.
New-onset nephrotic syndrome after Janssen COVID-19 vaccination: case report and literature review: https://pubmed.ncbi.nlm.nih.gov/34342187/.
Massive cervical lymphadenopathy following vaccination with COVID-19: https://pubmed.ncbi.nlm.nih.gov/34601889/
ANCA glomerulonephritis following Modern COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34081948/
Extensive longitudinal transverse myelitis following AstraZeneca COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34507942/.
Systemic capillary extravasation syndrome after vaccination with ChAdOx1 nCOV-19 (Oxford-AstraZeneca): https://pubmed.ncbi.nlm.nih.gov/34362727/
Unilateral axillary lymphadenopathy related to COVID-19 vaccine: pattern on screening breast MRI allowing benign evaluation: https://pubmed.ncbi.nlm.nih.gov/34325221/
Axillary lymphadenopathy in patients with recent Covid-19 vaccination: a new diagnostic dilemma: https://pubmed.ncbi.nlm.nih.gov/34825530/.
Minimal change disease and acute kidney injury after Pfizer-BioNTech COVID-19 vaccine: https://pubmed.ncbi.nlm.nih.gov/34000278/
COVID-19 vaccine-induced unilateral axillary adenopathy: follow-up evaluation in the USA: https://pubmed.ncbi.nlm.nih.gov/34655312/.
Gastroparesis after Pfizer-BioNTech COVID-19 vaccination: https://pubmed.ncbi.nlm.nih.gov/34187985/.
Abbate, A., Gavin, J., Madanchi, N., Kim, C., Shah, P. R., Klein, K., . . . Danielides, S. (2021). Fulminant myocarditis and systemic hyperinflammation temporally associated with BNT162b2 mRNA COVID-19 vaccination in two patients. Int J Cardiol, 340, 119-121. doi:10.1016/j.ijcard.2021.08.018. https://www.ncbi.nlm.nih.gov/pubmed/34416319
Abu Mouch, S., Roguin, A., Hellou, E., Ishai, A., Shoshan, U., Mahamid, L., . . . Berar Yanay, N. (2021). Myocarditis following COVID-19 mRNA vaccination. Vaccine, 39(29), 3790-3793. doi:10.1016/j.vaccine.2021.05.087. https://www.ncbi.nlm.nih.gov/pubmed/34092429
Albert, E., Aurigemma, G., Saucedo, J., & Gerson, D. S. (2021). Myocarditis following COVID-19 vaccination. Radiol Case Rep, 16(8), 2142-2145. doi:10.1016/j.radcr.2021.05.033. https://www.ncbi.nlm.nih.gov/pubmed/34025885
Aye, Y. N., Mai, A. S., Zhang, A., Lim, O. Z. H., Lin, N., Ng, C. H., . . . Chew, N. W. S. (2021). Acute Myocardial Infarction and Myocarditis following COVID-19 Vaccination. QJM. doi:10.1093/qjmed/hcab252. https://www.ncbi.nlm.nih.gov/pubmed/34586408
Azir, M., Inman, B., Webb, J., & Tannenbaum, L. (2021). STEMI Mimic: Focal Myocarditis in an Adolescent Patient After mRNA COVID-19 Vaccine. J Emerg Med, 61(6), e129-e132. doi:10.1016/j.jemermed.2021.09.017. https://www.ncbi.nlm.nih.gov/pubmed/34756746
Barda, N., Dagan, N., Ben-Shlomo, Y., Kepten, E., Waxman, J., Ohana, R., . . . Balicer, R. D. (2021). Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med, 385(12), 1078-1090. doi:10.1056/NEJMoa2110475. https://www.ncbi.nlm.nih.gov/pubmed/34432976
Bhandari, M., Pradhan, A., Vishwakarma, P., & Sethi, R. (2021). Coronavirus and cardiovascular manifestations- getting to the heart of the matter. World J Cardiol, 13(10), 556-565. doi:10.4330/wjc.v13.i10.556. https://www.ncbi.nlm.nih.gov/pubmed/34754400
Bozkurt, B., Kamat, I., & Hotez, P. J. (2021). Myocarditis With COVID-19 mRNA Vaccines. Circulation, 144(6), 471-484. doi:10.1161/CIRCULATIONAHA.121.056135. https://www.ncbi.nlm.nih.gov/pubmed/34281357
Buchhorn, R., Meyer, C., Schulze-Forster, K., Junker, J., & Heidecke, H. (2021). Autoantibody Release in Children after Corona Virus mRNA Vaccination: A Risk Factor of Multisystem Inflammatory Syndrome? Vaccines (Basel), 9(11). doi:10.3390/vaccines9111353. https://www.ncbi.nlm.nih.gov/pubmed/34835284
Calcaterra, G., Bassareo, P. P., Barilla, F., Romeo, F., & Mehta, J. L. (2022). Concerning the unexpected prothrombotic state following some coronavirus disease 2019 vaccines. J Cardiovasc Med (Hagerstown), 23(2), 71-74. doi:10.2459/JCM.0000000000001232. https://www.ncbi.nlm.nih.gov/pubmed/34366403
Calcaterra, G., Mehta, J. L., de Gregorio, C., Butera, G., Neroni, P., Fanos, V., & Bassareo, P. P. (2021). COVID 19 Vaccine for Adolescents. Concern about Myocarditis and Pericarditis. Pediatr Rep, 13(3), 530-533. doi:10.3390/pediatric13030061. https://www.ncbi.nlm.nih.gov/pubmed/34564344
Chai, Q., Nygaard, U., Schmidt, R. C., Zaremba, T., Moller, A. M., & Thorvig, C. M. (2022). Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine. Acta Paediatr, 111(1), 125-127. doi:10.1111/apa.16141. https://www.ncbi.nlm.nih.gov/pubmed/34617315
Chamling, B., Vehof, V., Drakos, S., Weil, M., Stalling, P., Vahlhaus, C., . . . Yilmaz, A. (2021). Occurrence of acute infarct-like myocarditis following COVID-19 vaccination: just an accidental co-incidence or rather vaccination-associated autoimmune myocarditis? Clin Res Cardiol, 110(11), 1850-1854. doi:10.1007/s00392-021-01916-w. https://www.ncbi.nlm.nih.gov/pubmed/34333695
Chang, J. C., & Hawley, H. B. (2021). Vaccine-Associated Thrombocytopenia and Thrombosis: Venous Endotheliopathy Leading to Venous Combined Micro-Macrothrombosis. Medicina (Kaunas), 57(11). doi:10.3390/medicina57111163. https://www.ncbi.nlm.nih.gov/pubmed/34833382
Chelala, L., Jeudy, J., Hossain, R., Rosenthal, G., Pietris, N., & White, C. (2021). Cardiac MRI Findings of Myocarditis After COVID-19 mRNA Vaccination in Adolescents. AJR Am J Roentgenol. doi:10.2214/AJR.21.26853. https://www.ncbi.nlm.nih.gov/pubmed/34704459
Choi, S., Lee, S., Seo, J. W., Kim, M. J., Jeon, Y. H., Park, J. H., . . . Yeo, N. S. (2021). Myocarditis-induced Sudden Death after BNT162b2 mRNA COVID-19 Vaccination in Korea: Case Report Focusing on Histopathological Findings. J Korean Med Sci, 36(40), e286. doi:10.3346/jkms.2021.36.e286. https://www.ncbi.nlm.nih.gov/pubmed/34664804
Chouchana, L., Blet, A., Al-Khalaf, M., Kafil, T. S., Nair, G., Robblee, J., . . . Liu, P. P. (2021). Features of Inflammatory Heart Reactions Following mRNA COVID-19 Vaccination at a Global Level. Clin Pharmacol Ther. doi:10.1002/cpt.2499. https://www.ncbi.nlm.nih.gov/pubmed/34860360
Chua, G. T., Kwan, M. Y. W., Chui, C. S. L., Smith, R. D., Cheung, E. C., Tian, T., . . . Ip, P. (2021). Epidemiology of Acute Myocarditis/Pericarditis in Hong Kong Adolescents Following Comirnaty Vaccination. Clin Infect Dis. doi:10.1093/cid/ciab989. https://www.ncbi.nlm.nih.gov/pubmed/34849657
Clarke, R., & Ioannou, A. (2021). Should T2 mapping be used in cases of recurrent myocarditis to differentiate between the acute inflammation and chronic scar? J Pediatr. doi:10.1016/j.jpeds.2021.12.026. https://www.ncbi.nlm.nih.gov/pubmed/34933012
Colaneri, M., De Filippo, M., Licari, A., Marseglia, A., Maiocchi, L., Ricciardi, A., . . . Bruno, R. (2021). COVID vaccination and asthma exacerbation: might there be a link? Int J Infect Dis, 112, 243-246. doi:10.1016/j.ijid.2021.09.026. https://www.ncbi.nlm.nih.gov/pubmed/34547487
Das, B. B., Kohli, U., Ramachandran, P., Nguyen, H. H., Greil, G., Hussain, T., . . . Khan, D. (2021). Myopericarditis after messenger RNA Coronavirus Disease 2019 Vaccination in Adolescents 12 to 18 Years of Age. J Pediatr, 238, 26-32 e21. doi:10.1016/j.jpeds.2021.07.044. https://www.ncbi.nlm.nih.gov/pubmed/34339728
Das, B. B., Moskowitz, W. B., Taylor, M. B., & Palmer, A. (2021). Myocarditis and Pericarditis Following mRNA COVID-19 Vaccination: What Do We Know So Far? Children (Basel), 8(7). doi:10.3390/children8070607. https://www.ncbi.nlm.nih.gov/pubmed/34356586
Deb, A., Abdelmalek, J., Iwuji, K., & Nugent, K. (2021). Acute Myocardial Injury Following COVID-19 Vaccination: A Case Report and Review of Current Evidence from Vaccine Adverse Events Reporting System Database. J Prim Care Community Health, 12, 21501327211029230. doi:10.1177/21501327211029230. https://www.ncbi.nlm.nih.gov/pubmed/34219532
Dickey, J. B., Albert, E., Badr, M., Laraja, K. M., Sena, L. M., Gerson, D. S., . . . Aurigemma, G. P. (2021). A Series of Patients With Myocarditis Following SARS-CoV-2 Vaccination With mRNA-1279 and BNT162b2. JACC Cardiovasc Imaging, 14(9), 1862-1863. doi:10.1016/j.jcmg.2021.06.003. https://www.ncbi.nlm.nih.gov/pubmed/34246585
Dimopoulou, D., Spyridis, N., Vartzelis, G., Tsolia, M. N., & Maritsi, D. N. (2021). Safety and tolerability of the COVID-19 mRNA-vaccine in adolescents with juvenile idiopathic arthritis on treatment with TNF-inhibitors. Arthritis Rheumatol. doi:10.1002/art.41977. https://www.ncbi.nlm.nih.gov/pubmed/34492161
Dimopoulou, D., Vartzelis, G., Dasoula, F., Tsolia, M., & Maritsi, D. (2021). Immunogenicity of the COVID-19 mRNA vaccine in adolescents with juvenile idiopathic arthritis on treatment with TNF inhibitors. Ann Rheum Dis. doi:10.1136/annrheumdis-2021-221607. https://www.ncbi.nlm.nih.gov/pubmed/34844930
Ehrlich, P., Klingel, K., Ohlmann-Knafo, S., Huttinger, S., Sood, N., Pickuth, D., & Kindermann, M. (2021). Biopsy-proven lymphocytic myocarditis following first mRNA COVID-19 vaccination in a 40-year-old male: case report. Clin Res Cardiol, 110(11), 1855-1859. doi:10.1007/s00392-021-01936-6. https://www.ncbi.nlm.nih.gov/pubmed/34487236
El Sahly, H. M., Baden, L. R., Essink, B., Doblecki-Lewis, S., Martin, J. M., Anderson, E. J., . . . Group, C. S. (2021). Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N Engl J Med, 385(19), 1774-1785. doi:10.1056/NEJMoa2113017. https://www.ncbi.nlm.nih.gov/pubmed/34551225
Facetti, S., Giraldi, M., Vecchi, A. L., Rogiani, S., & Nassiacos, D. (2021). [Acute myocarditis in a young adult two days after Pfizer vaccination]. G Ital Cardiol (Rome), 22(11), 891-893. doi:10.1714/3689.36746. https://www.ncbi.nlm.nih.gov/pubmed/34709227
Fazlollahi, A., Zahmatyar, M., Noori, M., Nejadghaderi, S. A., Sullman, M. J. M., Shekarriz-Foumani, R., . . . Safiri, S. (2021). Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series. Rev Med Virol, e2318. doi:10.1002/rmv.2318. https://www.ncbi.nlm.nih.gov/pubmed/34921468
Fazolo, T., Lima, K., Fontoura, J. C., de Souza, P. O., Hilario, G., Zorzetto, R., . . . Bonorino, C. (2021). Pediatric COVID-19 patients in South Brazil show abundant viral mRNA and strong specific anti-viral responses. Nat Commun, 12(1), 6844. doi:10.1038/s41467-021-27120-y. https://www.ncbi.nlm.nih.gov/pubmed/34824230
Fikenzer, S., & Laufs, U. (2021). Correction to: Response to Letter to the editors referring to Fikenzer, S., Uhe, T., Lavall, D., Rudolph, U., Falz, R., Busse, M., Hepp, P., & Laufs, U. (2020). Effects of surgical and FFP2/N95 face masks on cardiopulmonary exercise capacity. Clinical research in cardiology: official journal of the German Cardiac Society, 1-9. Advance online publication. https://doi.org/10.1007/s00392-020-01704-y. Clin Res Cardiol, 110(8), 1352. doi:10.1007/s00392-021-01896-x. https://www.ncbi.nlm.nih.gov/pubmed/34170372
Foltran, D., Delmas, C., Flumian, C., De Paoli, P., Salvo, F., Gautier, S., . . . Montastruc, F. (2021). Myocarditis and Pericarditis in Adolescents after First and Second doses of mRNA COVID-19 Vaccines. Eur Heart J Qual Care Clin Outcomes. doi:10.1093/ehjqcco/qcab090. https://www.ncbi.nlm.nih.gov/pubmed/34849667
Forgacs, D., Jang, H., Abreu, R. B., Hanley, H. B., Gattiker, J. L., Jefferson, A. M., & Ross, T. M. (2021). SARS-CoV-2 mRNA Vaccines Elicit Different Responses in Immunologically Naive and Pre-Immune Humans. Front Immunol, 12, 728021. doi:10.3389/fimmu.2021.728021. https://www.ncbi.nlm.nih.gov/pubmed/34646267
Furer, V., Eviatar, T., Zisman, D., Peleg, H., Paran, D., Levartovsky, D., . . . Elkayam, O. (2021). Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: a multicentre study. Ann Rheum Dis, 80(10), 1330-1338. doi:10.1136/annrheumdis-2021-220647. https://www.ncbi.nlm.nih.gov/pubmed/34127481
Galindo, R., Chow, H., & Rongkavilit, C. (2021). COVID-19 in Children: Clinical Manifestations and Pharmacologic Interventions Including Vaccine Trials. Pediatr Clin North Am, 68(5), 961-976. doi:10.1016/j.pcl.2021.05.004. https://www.ncbi.nlm.nih.gov/pubmed/34538306
Gargano, J. W., Wallace, M., Hadler, S. C., Langley, G., Su, J. R., Oster, M. E., . . . Oliver, S. E. (2021). Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices – United States, June 2021. MMWR Morb Mortal Wkly Rep, 70(27), 977-982. doi:10.15585/mmwr.mm7027e2. https://www.ncbi.nlm.nih.gov/pubmed/34237049
Gatti, M., Raschi, E., Moretti, U., Ardizzoni, A., Poluzzi, E., & Diemberger, I. (2021). Influenza Vaccination and Myo-Pericarditis in Patients Receiving Immune Checkpoint Inhibitors: Investigating the Likelihood of Interaction through the Vaccine Adverse Event Reporting System and VigiBase. Vaccines (Basel), 9(1). doi:10.3390/vaccines9010019. https://www.ncbi.nlm.nih.gov/pubmed/33406694
Gautam, N., Saluja, P., Fudim, M., Jambhekar, K., Pandey, T., & Al’Aref, S. (2021). A Late Presentation of COVID-19 Vaccine-Induced Myocarditis. Cureus, 13(9), e17890. doi:10.7759/cureus.17890. https://www.ncbi.nlm.nih.gov/pubmed/34660088
Gellad, W. F. (2021). Myocarditis after vaccination against covid-19. BMJ, 375, n3090. doi:10.1136/bmj.n3090. https://www.ncbi.nlm.nih.gov/pubmed/34916217
Greenhawt, M., Abrams, E. M., Shaker, M., Chu, D. K., Khan, D., Akin, C., . . . Golden, D. B. K. (2021). The Risk of Allergic Reaction to SARS-CoV-2 Vaccines and Recommended Evaluation and Management: A Systematic Review, Meta-Analysis, GRADE Assessment, and International Consensus Approach. J Allergy Clin Immunol Pract, 9(10), 3546-3567. doi:10.1016/j.jaip.2021.06.006. https://www.ncbi.nlm.nih.gov/pubmed/34153517
Haaf, P., Kuster, G. M., Mueller, C., Berger, C. T., Monney, P., Burger, P., . . . Tanner, F. C. (2021). The very low risk of myocarditis and pericarditis after mRNA COVID-19 vaccination should not discourage vaccination. Swiss Med Wkly, 151, w30087. doi:10.4414/smw.2021.w30087. https://www.ncbi.nlm.nih.gov/pubmed/34668687
Hasnie, A. A., Hasnie, U. A., Patel, N., Aziz, M. U., Xie, M., Lloyd, S. G., & Prabhu, S. D. (2021). Perimyocarditis following first dose of the mRNA-1273 SARS-CoV-2 (Moderna) vaccine in a healthy young male: a case report. BMC Cardiovasc Disord, 21(1), 375. doi:10.1186/s12872-021-02183-3. https://www.ncbi.nlm.nih.gov/pubmed/34348657
Hause, A. M., Gee, J., Baggs, J., Abara, W. E., Marquez, P., Thompson, D., . . . Shay, D. K. (2021). COVID-19 Vaccine Safety in Adolescents Aged 12-17 Years – United States, December 14, 2020-July 16, 2021. MMWR Morb Mortal Wkly Rep, 70(31), 1053-1058. doi:10.15585/mmwr.mm7031e1. https://www.ncbi.nlm.nih.gov/pubmed/34351881
Helms, J. M., Ansteatt, K. T., Roberts, J. C., Kamatam, S., Foong, K. S., Labayog, J. S., & Tarantino, M. D. (2021). Severe, Refractory Immune Thrombocytopenia Occurring After SARS-CoV-2 Vaccine. J Blood Med, 12, 221-224. doi:10.2147/JBM.S307047. https://www.ncbi.nlm.nih.gov/pubmed/33854395
Hippisley-Cox, J., Patone, M., Mei, X. W., Saatci, D., Dixon, S., Khunti, K., . . . Coupland, C. A. C. (2021). Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study. BMJ, 374, n1931. doi:10.1136/bmj.n1931. https://www.ncbi.nlm.nih.gov/pubmed/34446426
Ho, J. S., Sia, C. H., Ngiam, J. N., Loh, P. H., Chew, N. W., Kong, W. K., & Poh, K. K. (2021). A review of COVID-19 vaccination and the reported cardiac manifestations. Singapore Med J. doi:10.11622/smedj.2021210. https://www.ncbi.nlm.nih.gov/pubmed/34808708
Iguchi, T., Umeda, H., Kojima, M., Kanno, Y., Tanaka, Y., Kinoshita, N., & Sato, D. (2021). Cumulative Adverse Event Reporting of Anaphylaxis After mRNA COVID-19 Vaccine (Pfizer-BioNTech) Injections in Japan: The First-Month Report. Drug Saf, 44(11), 1209-1214. doi:10.1007/s40264-021-01104-9. https://www.ncbi.nlm.nih.gov/pubmed/34347278
In brief: Myocarditis with the Pfizer/BioNTech and Moderna COVID-19 vaccines. (2021). Med Lett Drugs Ther, 63(1629), e9. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/34544112https://www.ncbi.nlm.nih.gov/pubmed/3454412
Ioannou, A. (2021a). Myocarditis should be considered in those with a troponin rise and unobstructed coronary arteries following Pfizer-BioNTech COVID-19 vaccination. QJM. doi:10.1093/qjmed/hcab231. https://www.ncbi.nlm.nih.gov/pubmed/34463755
Ioannou, A. (2021b). T2 mapping should be utilised in cases of suspected myocarditis to confirm an acute inflammatory process. QJM. doi:10.1093/qjmed/hcab326. https://www.ncbi.nlm.nih.gov/pubmed/34931681
Isaak, A., Feisst, A., & Luetkens, J. A. (2021). Myocarditis Following COVID-19 Vaccination. Radiology, 301(1), E378-E379. doi:10.1148/radiol.2021211766. https://www.ncbi.nlm.nih.gov/pubmed/34342500
Istampoulouoglou, I., Dimitriou, G., Spani, S., Christ, A., Zimmermanns, B., Koechlin, S., . . . Leuppi-Taegtmeyer, A. B. (2021). Myocarditis and pericarditis in association with COVID-19 mRNA-vaccination: cases from a regional pharmacovigilance centre. Glob Cardiol Sci Pract, 2021(3), e202118. doi:10.21542/gcsp.2021.18. https://www.ncbi.nlm.nih.gov/pubmed/34805376
Jaafar, R., Boschi, C., Aherfi, S., Bancod, A., Le Bideau, M., Edouard, S., . . . La Scola, B. (2021). High Individual Heterogeneity of Neutralizing Activities against the Original Strain and Nine Different Variants of SARS-CoV-2. Viruses, 13(11). doi:10.3390/v13112177. https://www.ncbi.nlm.nih.gov/pubmed/34834983
Jain, S. S., Steele, J. M., Fonseca, B., Huang, S., Shah, S., Maskatia, S. A., . . . Grosse-Wortmann, L. (2021). COVID-19 Vaccination-Associated Myocarditis in Adolescents. Pediatrics, 148(5). doi:10.1542/peds.2021-053427. https://www.ncbi.nlm.nih.gov/pubmed/34389692
Jhaveri, R., Adler-Shohet, F. C., Blyth, C. C., Chiotos, K., Gerber, J. S., Green, M., . . . Zaoutis, T. (2021). Weighing the Risks of Perimyocarditis With the Benefits of SARS-CoV-2 mRNA Vaccination in Adolescents. J Pediatric Infect Dis Soc, 10(10), 937-939. doi:10.1093/jpids/piab061. https://www.ncbi.nlm.nih.gov/pubmed/34270752
Kaneta, K., Yokoi, K., Jojima, K., Kotooka, N., & Node, K. (2021). Young Male With Myocarditis Following mRNA-1273 Vaccination Against Coronavirus Disease-2019 (COVID-19). Circ J. doi:10.1253/circj.CJ-21-0818. https://www.ncbi.nlm.nih.gov/pubmed/34744118
Kaul, R., Sreenivasan, J., Goel, A., Malik, A., Bandyopadhyay, D., Jin, C., . . . Panza, J. A. (2021). Myocarditis following COVID-19 vaccination. Int J Cardiol Heart Vasc, 36, 100872. doi:10.1016/j.ijcha.2021.100872. https://www.ncbi.nlm.nih.gov/pubmed/34568540
Khogali, F., & Abdelrahman, R. (2021). Unusual Presentation of Acute Perimyocarditis Following SARS-COV-2 mRNA-1237 Moderna Vaccination. Cureus, 13(7), e16590. doi:10.7759/cureus.16590. https://www.ncbi.nlm.nih.gov/pubmed/34447639
Kim, H. W., Jenista, E. R., Wendell, D. C., Azevedo, C. F., Campbell, M. J., Darty, S. N., . . . Kim, R. J. (2021). Patients With Acute Myocarditis Following mRNA COVID-19 Vaccination. JAMA Cardiol, 6(10), 1196-1201. doi:10.1001/jamacardio.2021.2828. https://www.ncbi.nlm.nih.gov/pubmed/34185046
Kim, I. C., Kim, H., Lee, H. J., Kim, J. Y., & Kim, J. Y. (2021). Cardiac Imaging of Acute Myocarditis Following COVID-19 mRNA Vaccination. J Korean Med Sci, 36(32), e229. doi:10.3346/jkms.2021.36.e229. https://www.ncbi.nlm.nih.gov/pubmed/34402228
King, W. W., Petersen, M. R., Matar, R. M., Budweg, J. B., Cuervo Pardo, L., & Petersen, J. W. (2021). Myocarditis following mRNA vaccination against SARS-CoV-2, a case series. Am Heart J Plus, 8, 100042. doi:10.1016/j.ahjo.2021.100042. https://www.ncbi.nlm.nih.gov/pubmed/34396358
Klein, N. P., Lewis, N., Goddard, K., Fireman, B., Zerbo, O., Hanson, K. E., . . . Weintraub, E. S. (2021). Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA, 326(14), 1390-1399. doi:10.1001/jama.2021.15072. https://www.ncbi.nlm.nih.gov/pubmed/34477808
Klimek, L., Bergmann, K. C., Brehler, R., Pfutzner, W., Zuberbier, T., Hartmann, K., . . . Worm, M. (2021). Practical handling of allergic reactions to COVID-19 vaccines: A position paper from German and Austrian Allergy Societies AeDA, DGAKI, GPA and OGAI. Allergo J Int, 1-17. doi:10.1007/s40629-021-00165-7. https://www.ncbi.nlm.nih.gov/pubmed/33898162
Klimek, L., Novak, N., Hamelmann, E., Werfel, T., Wagenmann, M., Taube, C., . . . Worm, M. (2021). Severe allergic reactions after COVID-19 vaccination with the Pfizer/BioNTech vaccine in Great Britain and USA: Position statement of the German Allergy Societies: Medical Association of German Allergologists (AeDA), German Society for Allergology and Clinical Immunology (DGAKI) and Society for Pediatric Allergology and Environmental Medicine (GPA). Allergo J Int, 30(2), 51-55. doi:10.1007/s40629-020-00160-4. https://www.ncbi.nlm.nih.gov/pubmed/33643776
Kohli, U., Desai, L., Chowdhury, D., Harahsheh, A. S., Yonts, A. B., Ansong, A., . . . Ang, J. Y. (2021). mRNA Coronavirus-19 Vaccine-Associated Myopericarditis in Adolescents: A Survey Study. J Pediatr. doi:10.1016/j.jpeds.2021.12.025. https://www.ncbi.nlm.nih.gov/pubmed/34952008
Kostoff, R. N., Calina, D., Kanduc, D., Briggs, M. B., Vlachoyiannopoulos, P., Svistunov, A. A., & Tsatsakis, A. (2021a). Erratum to “Why are we vaccinating children against COVID-19?” [Toxicol. Rep. 8C (2021) 1665-1684 / 1193]. Toxicol Rep, 8, 1981. doi:10.1016/j.toxrep.2021.10.003. https://www.ncbi.nlm.nih.gov/pubmed/34642628
Kostoff, R. N., Calina, D., Kanduc, D., Briggs, M. B., Vlachoyiannopoulos, P., Svistunov, A. A., & Tsatsakis, A. (2021b). Why are we vaccinating children against COVID-19? Toxicol Rep, 8, 1665-1684. doi:10.1016/j.toxrep.2021.08.010. https://www.ncbi.nlm.nih.gov/pubmed/34540594
Kremsner, P. G., Mann, P., Kroidl, A., Leroux-Roels, I., Schindler, C., Gabor, J. J., . . . Group, C.-N.-S. (2021). Safety and immunogenicity of an mRNA-lipid nanoparticle vaccine candidate against SARS-CoV-2 : A phase 1 randomized clinical trial. Wien Klin Wochenschr, 133(17-18), 931-941. doi:10.1007/s00508-021-01922-y. https://www.ncbi.nlm.nih.gov/pubmed/34378087
Kustin, T., Harel, N., Finkel, U., Perchik, S., Harari, S., Tahor, M., . . . Stern, A. (2021). Evidence for increased breakthrough rates of SARS-CoV-2 variants of concern in BNT162b2-mRNA-vaccinated individuals. Nat Med, 27(8), 1379-1384. doi:10.1038/s41591-021-01413-7. https://www.ncbi.nlm.nih.gov/pubmed/34127854
Kwan, M. Y. W., Chua, G. T., Chow, C. B., Tsao, S. S. L., To, K. K. W., Yuen, K. Y., . . . Ip, P. (2021). mRNA COVID vaccine and myocarditis in adolescents. Hong Kong Med J, 27(5), 326-327. doi:10.12809/hkmj215120. https://www.ncbi.nlm.nih.gov/pubmed/34393110
Lee, E., Chew, N. W. S., Ng, P., & Yeo, T. J. (2021). Reply to “Letter to the editor: Myocarditis should be considered in those with a troponin rise and unobstructed coronary arteries following PfizerBioNTech COVID-19 vaccination”. QJM. doi:10.1093/qjmed/hcab232. https://www.ncbi.nlm.nih.gov/pubmed/34463770
Lee, E. J., Cines, D. B., Gernsheimer, T., Kessler, C., Michel, M., Tarantino, M. D., . . . Bussel, J. B. (2021). Thrombocytopenia following Pfizer and Moderna SARS-CoV-2 vaccination. Am J Hematol, 96(5), 534-537. doi:10.1002/ajh.26132. https://www.ncbi.nlm.nih.gov/pubmed/33606296
Levin, D., Shimon, G., Fadlon-Derai, M., Gershovitz, L., Shovali, A., Sebbag, A., . . . Gordon, B. (2021). Myocarditis following COVID-19 vaccination – A case series. Vaccine, 39(42), 6195-6200. doi:10.1016/j.vaccine.2021.09.004. https://www.ncbi.nlm.nih.gov/pubmed/34535317
Li, J., Hui, A., Zhang, X., Yang, Y., Tang, R., Ye, H., . . . Zhu, F. (2021). Safety and immunogenicity of the SARS-CoV-2 BNT162b1 mRNA vaccine in younger and older Chinese adults: a randomized, placebo-controlled, double-blind phase 1 study. Nat Med, 27(6), 1062-1070. doi:10.1038/s41591-021-01330-9. https://www.ncbi.nlm.nih.gov/pubmed/33888900
Li, M., Yuan, J., Lv, G., Brown, J., Jiang, X., & Lu, Z. K. (2021). Myocarditis and Pericarditis following COVID-19 Vaccination: Inequalities in Age and Vaccine Types. J Pers Med, 11(11). doi:10.3390/jpm11111106. https://www.ncbi.nlm.nih.gov/pubmed/34834458
Lim, Y., Kim, M. C., Kim, K. H., Jeong, I. S., Cho, Y. S., Choi, Y. D., & Lee, J. E. (2021). Case Report: Acute Fulminant Myocarditis and Cardiogenic Shock After Messenger RNA Coronavirus Disease 2019 Vaccination Requiring Extracorporeal Cardiopulmonary Resuscitation. Front Cardiovasc Med, 8, 758996. doi:10.3389/fcvm.2021.758996. https://www.ncbi.nlm.nih.gov/pubmed/34778411
Long, S. S. (2021). Important Insights into Myopericarditis after the Pfizer mRNA COVID-19 Vaccination in Adolescents. J Pediatr, 238, 5. doi:10.1016/j.jpeds.2021.07.057. https://www.ncbi.nlm.nih.gov/pubmed/34332972
Luk, A., Clarke, B., Dahdah, N., Ducharme, A., Krahn, A., McCrindle, B., . . . McDonald, M. (2021). Myocarditis and Pericarditis After COVID-19 mRNA Vaccination: Practical Considerations for Care Providers. Can J Cardiol, 37(10), 1629-1634. doi:10.1016/j.cjca.2021.08.001. https://www.ncbi.nlm.nih.gov/pubmed/34375696
Madelon, N., Lauper, K., Breville, G., Sabater Royo, I., Goldstein, R., Andrey, D. O., . . . Eberhardt, C. S. (2021). Robust T cell responses in anti-CD20 treated patients following COVID-19 vaccination: a prospective cohort study. Clin Infect Dis. doi:10.1093/cid/ciab954. https://www.ncbi.nlm.nih.gov/pubmed/34791081
Mangat, C., & Milosavljevic, N. (2021). BNT162b2 Vaccination during Pregnancy Protects Both the Mother and Infant: Anti-SARS-CoV-2 S Antibodies Persistently Positive in an Infant at 6 Months of Age. Case Rep Pediatr, 2021, 6901131. doi:10.1155/2021/6901131. https://www.ncbi.nlm.nih.gov/pubmed/34676123
Mark, C., Gupta, S., Punnett, A., Upton, J., Orkin, J., Atkinson, A., . . . Alexander, S. (2021). Safety of administration of BNT162b2 mRNA (Pfizer-BioNTech) COVID-19 vaccine in youths and young adults with a history of acute lymphoblastic leukemia and allergy to PEG-asparaginase. Pediatr Blood Cancer, 68(11), e29295. doi:10.1002/pbc.29295. https://www.ncbi.nlm.nih.gov/pubmed/34398511
Martins-Filho, P. R., Quintans-Junior, L. J., de Souza Araujo, A. A., Sposato, K. B., Souza Tavares, C. S., Gurgel, R. Q., . . . Santos, V. S. (2021). Socio-economic inequalities and COVID-19 incidence and mortality in Brazilian children: a nationwide register-based study. Public Health, 190, 4-6. doi:10.1016/j.puhe.2020.11.005. https://www.ncbi.nlm.nih.gov/pubmed/33316478
McLean, K., & Johnson, T. J. (2021). Myopericarditis in a previously healthy adolescent male following COVID-19 vaccination: A case report. Acad Emerg Med, 28(8), 918-921. doi:10.1111/acem.14322. https://www.ncbi.nlm.nih.gov/pubmed/34133825
Mevorach, D., Anis, E., Cedar, N., Bromberg, M., Haas, E. J., Nadir, E., . . . Alroy-Preis, S. (2021). Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel. N Engl J Med, 385(23), 2140-2149. doi:10.1056/NEJMoa2109730. https://www.ncbi.nlm.nih.gov/pubmed/34614328
Minocha, P. K., Better, D., Singh, R. K., & Hoque, T. (2021). Recurrence of Acute Myocarditis Temporally Associated with Receipt of the mRNA Coronavirus Disease 2019 (COVID-19) Vaccine in a Male Adolescent. J Pediatr, 238, 321-323. doi:10.1016/j.jpeds.2021.06.035. https://www.ncbi.nlm.nih.gov/pubmed/34166671
Mizrahi, B., Lotan, R., Kalkstein, N., Peretz, A., Perez, G., Ben-Tov, A., . . . Patalon, T. (2021). Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat Commun, 12(1), 6379. doi:10.1038/s41467-021-26672-3. https://www.ncbi.nlm.nih.gov/pubmed/34737312
Moffitt, K., Cheung, E., Yeung, T., Stamoulis, C., & Malley, R. (2021). Analysis of Staphylococcus aureus Transcriptome in Pediatric Soft Tissue Abscesses and Comparison to Murine Infections. Infect Immun, 89(4). doi:10.1128/IAI.00715-20. https://www.ncbi.nlm.nih.gov/pubmed/33526560
Mohamed, L., Madsen, A. M. R., Schaltz-Buchholzer, F., Ostenfeld, A., Netea, M. G., Benn, C. S., & Kofoed, P. E. (2021). Reactivation of BCG vaccination scars after vaccination with mRNA-Covid-vaccines: two case reports. BMC Infect Dis, 21(1), 1264. doi:10.1186/s12879-021-06949-0. https://www.ncbi.nlm.nih.gov/pubmed/34930152
Montgomery, J., Ryan, M., Engler, R., Hoffman, D., McClenathan, B., Collins, L., . . . Cooper, L. T., Jr. (2021). Myocarditis Following Immunization With mRNA COVID-19 Vaccines in Members of the US Military. JAMA Cardiol, 6(10), 1202-1206. doi:10.1001/jamacardio.2021.2833. https://www.ncbi.nlm.nih.gov/pubmed/34185045
Murakami, Y., Shinohara, M., Oka, Y., Wada, R., Noike, R., Ohara, H., . . . Ikeda, T. (2021). Myocarditis Following a COVID-19 Messenger RNA Vaccination: A Japanese Case Series. Intern Med. doi:10.2169/internalmedicine.8731-21. https://www.ncbi.nlm.nih.gov/pubmed/34840235
Nagasaka, T., Koitabashi, N., Ishibashi, Y., Aihara, K., Takama, N., Ohyama, Y., . . . Kaneko, Y. (2021). Acute Myocarditis Associated with COVID-19 Vaccination: A Case Report. J Cardiol Cases. doi:10.1016/j.jccase.2021.11.006. https://www.ncbi.nlm.nih.gov/pubmed/34876937
Ntouros, P. A., Vlachogiannis, N. I., Pappa, M., Nezos, A., Mavragani, C. P., Tektonidou, M. G., . . . Sfikakis, P. P. (2021). Effective DNA damage response after acute but not chronic immune challenge: SARS-CoV-2 vaccine versus Systemic Lupus Erythematosus. Clin Immunol, 229, 108765. doi:10.1016/j.clim.2021.108765. https://www.ncbi.nlm.nih.gov/pubmed/34089859
Nygaard, U., Holm, M., Bohnstedt, C., Chai, Q., Schmidt, L. S., Hartling, U. B., . . . Stensballe, L. G. (2022). Population-based Incidence of Myopericarditis After COVID-19 Vaccination in Danish Adolescents. Pediatr Infect Dis J, 41(1), e25-e28. doi:10.1097/INF.0000000000003389. https://www.ncbi.nlm.nih.gov/pubmed/34889875
Oberhardt, V., Luxenburger, H., Kemming, J., Schulien, I., Ciminski, K., Giese, S., . . . Hofmann, M. (2021). Rapid and stable mobilization of CD8(+) T cells by SARS-CoV-2 mRNA vaccine. Nature, 597(7875), 268-273. doi:10.1038/s41586-021-03841-4. https://www.ncbi.nlm.nih.gov/pubmed/34320609
Park, H., Yun, K. W., Kim, K. R., Song, S. H., Ahn, B., Kim, D. R., . . . Kim, Y. J. (2021). Epidemiology and Clinical Features of Myocarditis/Pericarditis before the Introduction of mRNA COVID-19 Vaccine in Korean Children: a Multicenter Study. J Korean Med Sci, 36(32), e232. doi:10.3346/jkms.2021.36.e232. https://www.ncbi.nlm.nih.gov/pubmed/34402230
Park, J., Brekke, D. R., & Bratincsak, A. (2021). Self-limited myocarditis presenting with chest pain and ST segment elevation in adolescents after vaccination with the BNT162b2 mRNA vaccine. Cardiol Young, 1-4. doi:10.1017/S1047951121002547. https://www.ncbi.nlm.nih.gov/pubmed/34180390
Patel, Y. R., Louis, D. W., Atalay, M., Agarwal, S., & Shah, N. R. (2021). Cardiovascular magnetic resonance findings in young adult patients with acute myocarditis following mRNA COVID-19 vaccination: a case series. J Cardiovasc Magn Reson, 23(1), 101. doi:10.1186/s12968-021-00795-4. https://www.ncbi.nlm.nih.gov/pubmed/34496880
Patone, M., Mei, X. W., Handunnetthi, L., Dixon, S., Zaccardi, F., Shankar-Hari, M., . . . Hippisley-Cox, J. (2021). Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med. doi:10.1038/s41591-021-01630-0. https://www.ncbi.nlm.nih.gov/pubmed/34907393
Patrignani, A., Schicchi, N., Calcagnoli, F., Falchetti, E., Ciampani, N., Argalia, G., & Mariani, A. (2021). Acute myocarditis following Comirnaty vaccination in a healthy man with previous SARS-CoV-2 infection. Radiol Case Rep, 16(11), 3321-3325. doi:10.1016/j.radcr.2021.07.082. https://www.ncbi.nlm.nih.gov/pubmed/34367386
Perez, Y., Levy, E. R., Joshi, A. Y., Virk, A., Rodriguez-Porcel, M., Johnson, M., . . . Swift, M. D. (2021). Myocarditis Following COVID-19 mRNA Vaccine: A Case Series and Incidence Rate Determination. Clin Infect Dis. doi:10.1093/cid/ciab926. https://www.ncbi.nlm.nih.gov/pubmed/34734240
Perrotta, A., Biondi-Zoccai, G., Saade, W., Miraldi, F., Morelli, A., Marullo, A. G., . . . Peruzzi, M. (2021). A snapshot global survey on side effects of COVID-19 vaccines among healthcare professionals and armed forces with a focus on headache. Panminerva Med, 63(3), 324-331. doi:10.23736/S0031-0808.21.04435-9. https://www.ncbi.nlm.nih.gov/pubmed/34738774
Pinana, J. L., Lopez-Corral, L., Martino, R., Montoro, J., Vazquez, L., Perez, A., . . . Cell Therapy, G. (2022). SARS-CoV-2-reactive antibody detection after SARS-CoV-2 vaccination in hematopoietic stem cell transplant recipients: Prospective survey from the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group. Am J Hematol, 97(1), 30-42. doi:10.1002/ajh.26385. https://www.ncbi.nlm.nih.gov/pubmed/34695229
Revon-Riviere, G., Ninove, L., Min, V., Rome, A., Coze, C., Verschuur, A., . . . Andre, N. (2021). The BNT162b2 mRNA COVID-19 vaccine in adolescents and young adults with cancer: A monocentric experience. Eur J Cancer, 154, 30-34. doi:10.1016/j.ejca.2021.06.002. https://www.ncbi.nlm.nih.gov/pubmed/34233234
Sanchez Tijmes, F., Thavendiranathan, P., Udell, J. A., Seidman, M. A., & Hanneman, K. (2021). Cardiac MRI Assessment of Nonischemic Myocardial Inflammation: State of the Art Review and Update on Myocarditis Associated with COVID-19 Vaccination. Radiol Cardiothorac Imaging, 3(6), e210252. doi:10.1148/ryct.210252. https://www.ncbi.nlm.nih.gov/pubmed/34934954
Schauer, J., Buddhe, S., Colyer, J., Sagiv, E., Law, Y., Mallenahalli Chikkabyrappa, S., & Portman, M. A. (2021). Myopericarditis After the Pfizer Messenger Ribonucleic Acid Coronavirus Disease Vaccine in Adolescents. J Pediatr, 238, 317-320. doi:10.1016/j.jpeds.2021.06.083. https://www.ncbi.nlm.nih.gov/pubmed/34228985
Schneider, J., Sottmann, L., Greinacher, A., Hagen, M., Kasper, H. U., Kuhnen, C., . . . Schmeling, A. (2021). Postmortem investigation of fatalities following vaccination with COVID-19 vaccines. Int J Legal Med, 135(6), 2335-2345. doi:10.1007/s00414-021-02706-9. https://www.ncbi.nlm.nih.gov/pubmed/34591186
Schramm, R., Costard-Jackle, A., Rivinius, R., Fischer, B., Muller, B., Boeken, U., . . . Gummert, J. (2021). Poor humoral and T-cell response to two-dose SARS-CoV-2 messenger RNA vaccine BNT162b2 in cardiothoracic transplant recipients. Clin Res Cardiol, 110(8), 1142-1149. doi:10.1007/s00392-021-01880-5. https://www.ncbi.nlm.nih.gov/pubmed/34241676
IMPORTANT (Autopsy findings) – Sessa, F., Salerno, M., Esposito, M., Di Nunno, N., Zamboni, P., & Pomara, C. (2021). Autopsy Findings and Causality Relationship between Death and COVID-19 Vaccination: A Systematic Review. J Clin Med, 10(24). doi:10.3390/jcm10245876. https://www.ncbi.nlm.nih.gov/pubmed/34945172
Sharif, N., Alzahrani, K. J., Ahmed, S. N., & Dey, S. K. (2021). Efficacy, Immunogenicity and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Front Immunol, 12, 714170. doi:10.3389/fimmu.2021.714170. https://www.ncbi.nlm.nih.gov/pubmed/34707602
Shay, D. K., Gee, J., Su, J. R., Myers, T. R., Marquez, P., Liu, R., . . . Shimabukuro, T. T. (2021). Safety Monitoring of the Janssen (Johnson & Johnson) COVID-19 Vaccine – United States, March-April 2021. MMWR Morb Mortal Wkly Rep, 70(18), 680-684. doi:10.15585/mmwr.mm7018e2. https://www.ncbi.nlm.nih.gov/pubmed/33956784
Shazley, O., & Alshazley, M. (2021). A COVID-Positive 52-Year-Old Man Presented With Venous Thromboembolism and Disseminated Intravascular Coagulation Following Johnson & Johnson Vaccination: A Case-Study. Cureus, 13(7), e16383. doi:10.7759/cureus.16383. https://www.ncbi.nlm.nih.gov/pubmed/34408937
Shiyovich, A., Witberg, G., Aviv, Y., Eisen, A., Orvin, K., Wiessman, M., . . . Hamdan, A. (2021). Myocarditis following COVID-19 vaccination: magnetic resonance imaging study. Eur Heart J Cardiovasc Imaging. doi:10.1093/ehjci/jeab230. https://www.ncbi.nlm.nih.gov/pubmed/34739045
Simone, A., Herald, J., Chen, A., Gulati, N., Shen, A. Y., Lewin, B., & Lee, M. S. (2021). Acute Myocarditis Following COVID-19 mRNA Vaccination in Adults Aged 18 Years or Older. JAMA Intern Med, 181(12), 1668-1670. doi:10.1001/jamainternmed.2021.5511. https://www.ncbi.nlm.nih.gov/pubmed/34605853
Singer, M. E., Taub, I. B., & Kaelber, D. C. (2021). Risk of Myocarditis from COVID-19 Infection in People Under Age 20: A Population-Based Analysis. medRxiv. doi:10.1101/2021.07.23.21260998. https://www.ncbi.nlm.nih.gov/pubmed/34341797
Smith, C., Odd, D., Harwood, R., Ward, J., Linney, M., Clark, M., . . . Fraser, L. K. (2021). Deaths in children and young people in England after SARS-CoV-2 infection during the first pandemic year. Nat Med. doi:10.1038/s41591-021-01578-1. https://www.ncbi.nlm.nih.gov/pubmed/34764489
Snapiri, O., Rosenberg Danziger, C., Shirman, N., Weissbach, A., Lowenthal, A., Ayalon, I., . . . Bilavsky, E. (2021). Transient Cardiac Injury in Adolescents Receiving the BNT162b2 mRNA COVID-19 Vaccine. Pediatr Infect Dis J, 40(10), e360-e363. doi:10.1097/INF.0000000000003235. https://www.ncbi.nlm.nih.gov/pubmed/34077949
Spinner, J. A., Julien, C. L., Olayinka, L., Dreyer, W. J., Bocchini, C. E., Munoz, F. M., & Devaraj, S. (2021). SARS-CoV-2 anti-spike antibodies after vaccination in pediatric heart transplantation: A first report. J Heart Lung Transplant. doi:10.1016/j.healun.2021.11.001. https://www.ncbi.nlm.nih.gov/pubmed/34911654
Starekova, J., Bluemke, D. A., Bradham, W. S., Grist, T. M., Schiebler, M. L., & Reeder, S. B. (2021). Myocarditis Associated with mRNA COVID-19 Vaccination. Radiology, 301(2), E409-E411. doi:10.1148/radiol.2021211430. https://www.ncbi.nlm.nih.gov/pubmed/34282971
Sulemankhil, I., Abdelrahman, M., & Negi, S. I. (2021). Temporal association between the COVID-19 Ad26.COV2.S vaccine and acute myocarditis: A case report and literature review. Cardiovasc Revasc Med. doi:10.1016/j.carrev.2021.08.012. https://www.ncbi.nlm.nih.gov/pubmed/34420869
Tailor, P. D., Feighery, A. M., El-Sabawi, B., & Prasad, A. (2021). Case report: acute myocarditis following the second dose of mRNA-1273 SARS-CoV-2 vaccine. Eur Heart J Case Rep, 5(8), ytab319. doi:10.1093/ehjcr/ytab319. https://www.ncbi.nlm.nih.gov/pubmed/34514306
Takeda, M., Ishio, N., Shoji, T., Mori, N., Matsumoto, M., & Shikama, N. (2021). Eosinophilic Myocarditis Following Coronavirus Disease 2019 (COVID-19) Vaccination. Circ J. doi:10.1253/circj.CJ-21-0935. https://www.ncbi.nlm.nih.gov/pubmed/34955479
Team, C. C.-R., Food, & Drug, A. (2021). Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine – United States, December 14-23, 2020. MMWR Morb Mortal Wkly Rep, 70(2), 46-51. doi:10.15585/mmwr.mm7002e1. https://www.ncbi.nlm.nih.gov/pubmed/33444297
Thompson, M. G., Burgess, J. L., Naleway, A. L., Tyner, H., Yoon, S. K., Meece, J., . . . Gaglani, M. (2021). Prevention and Attenuation of Covid-19 with the BNT162b2 and mRNA-1273 Vaccines. N Engl J Med, 385(4), 320-329. doi:10.1056/NEJMoa2107058. https://www.ncbi.nlm.nih.gov/pubmed/34192428
Tinoco, M., Leite, S., Faria, B., Cardoso, S., Von Hafe, P., Dias, G., . . . Lourenco, A. (2021). Perimyocarditis Following COVID-19 Vaccination. Clin Med Insights Cardiol, 15, 11795468211056634. doi:10.1177/11795468211056634. https://www.ncbi.nlm.nih.gov/pubmed/34866957
Truong, D. T., Dionne, A., Muniz, J. C., McHugh, K. E., Portman, M. A., Lambert, L. M., . . . Newburger, J. W. (2021). Clinically Suspected Myocarditis Temporally Related to COVID-19 Vaccination in Adolescents and Young Adults. Circulation. doi:10.1161/CIRCULATIONAHA.121.056583. https://www.ncbi.nlm.nih.gov/pubmed/34865500
Tutor, A., Unis, G., Ruiz, B., Bolaji, O. A., & Bob-Manuel, T. (2021). Spectrum of Suspected Cardiomyopathy Due to COVID-19: A Case Series. Curr Probl Cardiol, 46(10), 100926. doi:10.1016/j.cpcardiol.2021.100926. https://www.ncbi.nlm.nih.gov/pubmed/34311983
Umei, T. C., Kishino, Y., Shiraishi, Y., Inohara, T., Yuasa, S., & Fukuda, K. (2021). Recurrence of myopericarditis following mRNA COVID-19 vaccination in a male adolescent. CJC Open. doi:10.1016/j.cjco.2021.12.002. https://www.ncbi.nlm.nih.gov/pubmed/34904134
Vidula, M. K., Ambrose, M., Glassberg, H., Chokshi, N., Chen, T., Ferrari, V. A., & Han, Y. (2021). Myocarditis and Other Cardiovascular Complications of the mRNA-Based COVID-19 Vaccines. Cureus, 13(6), e15576. doi:10.7759/cureus.15576. https://www.ncbi.nlm.nih.gov/pubmed/34277198
Visclosky, T., Theyyunni, N., Klekowski, N., & Bradin, S. (2021). Myocarditis Following mRNA COVID-19 Vaccine. Pediatr Emerg Care, 37(11), 583-584. doi:10.1097/PEC.0000000000002557. https://www.ncbi.nlm.nih.gov/pubmed/34731877
Warren, C. M., Snow, T. T., Lee, A. S., Shah, M. M., Heider, A., Blomkalns, A., . . . Nadeau, K. C. (2021). Assessment of Allergic and Anaphylactic Reactions to mRNA COVID-19 Vaccines With Confirmatory Testing in a US Regional Health System. JAMA Netw Open, 4(9), e2125524. doi:10.1001/jamanetworkopen.2021.25524. https://www.ncbi.nlm.nih.gov/pubmed/34533570
Watkins, K., Griffin, G., Septaric, K., & Simon, E. L. (2021). Myocarditis after BNT162b2 vaccination in a healthy male. Am J Emerg Med, 50, 815 e811-815 e812. doi:10.1016/j.ajem.2021.06.051. https://www.ncbi.nlm.nih.gov/pubmed/34229940
Weitzman, E. R., Sherman, A. C., & Levy, O. (2021). SARS-CoV-2 mRNA Vaccine Attitudes as Expressed in U.S. FDA Public Commentary: Need for a Public-Private Partnership in a Learning Immunization System. Front Public Health, 9, 695807. doi:10.3389/fpubh.2021.695807. https://www.ncbi.nlm.nih.gov/pubmed/34336774
Welsh, K. J., Baumblatt, J., Chege, W., Goud, R., & Nair, N. (2021). Thrombocytopenia including immune thrombocytopenia after receipt of mRNA COVID-19 vaccines reported to the Vaccine Adverse Event Reporting System (VAERS). Vaccine, 39(25), 3329-3332. doi:10.1016/j.vaccine.2021.04.054. https://www.ncbi.nlm.nih.gov/pubmed/34006408
Witberg, G., Barda, N., Hoss, S., Richter, I., Wiessman, M., Aviv, Y., . . . Kornowski, R. (2021). Myocarditis after Covid-19 Vaccination in a Large Health Care Organization. N Engl J Med, 385(23), 2132-2139. doi:10.1056/NEJMoa2110737. https://www.ncbi.nlm.nih.gov/pubmed/34614329
Zimmermann, P., & Curtis, N. (2020). Why is COVID-19 less severe in children? A review of the proposed mechanisms underlying the age-related difference in severity of SARS-CoV-2 infections. Arch Dis Child. doi:10.1136/archdischild-2020-320338. https://www.ncbi.nlm.nih.gov/pubmed/33262177